Programming Languages

http:/ /www.cse.iitd.ac.in/“sak /courses/pl /2021-22 /index.html

S. Arun-Kumar
Department of Computer Science and Engineering
I. I. T. Delhi, Hauz Khas, New Delht 110 016.

April 17, 2023

<<

. | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 1 oF 778 |
PL April 17, 2023

http://www.cse.iitd.ac.in/~sak/courses/pl/2021-22/index.html

Contents

1 The Programming Languages Overview 3
2 Introduction to Compiling 25
3 Scanning or Lexical Analysis 46
3.1 Regular Expressions e 59
3.2 Nondeterministic Finite Automata (NFA) 83
3.3 Deterministic Finite Automata (DFA) 119
4 Parsing or Syntax Analysis 141
4.1 Grammars 141
4.2 Context-Free Grammars 148

< | ‘ > | ‘ > > . Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 2 OF 778
| ‘ PL April 17, 2023

4.3 Ambiguity 162

4.4 The “dangling else” problem 182
4.5 Specification of Syntax: Extended Backus-Naur Form 193
4.6 The WHILE Programming Language: Syntax 201
A7 Parsing e 219
4.8 Recursive Descent Parsing 224
4.9 A recursive descent parser, 239
4.10 Shift-Reduce Parsing 243
4.11 Bottom-Up Parsing, 307
412 Simple LR Parsing 325
Bindings, Attributes & Semantic Analysis 368
5.1 Context-sensitive analysis and Semantics 374
-« [<« [+ [= T S T R | T

b.2 Binding L 380

6 (Static) Scope Rules 391
7 Symbol Table 411
8 Runtime Structure 420
9 Abstract Syntax 431
10 Syntax-Directed Translation 447

10.1 Synthesized Attributes L 459

10.2 Inherited Attributes 480
11 Intermediate Representation 501

< | ‘ | ‘ > > i Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 4 OF 778
| ‘ > PL April 17, 2023

12 The Pure Untyped Lambda Calculus: Basics 529

12.1 Motivation for A 530

12.2 The A-notation H34

13 Notions of Reduction 568
13.1 Recursion and the Y combinator H&0

14 Representing Data in the Untyped Lambda Calculus 583
15 Confluence Definitions 594
15.1 Why confluence? 600

15.2 Confluence: Church-Rosser 610

15.3 The Church-Rosser Property 618

<<« | ‘ L | | ‘ | 4 | ‘ > > Go Back | ‘ FULL SCREEN | ‘ CLOSE | ‘ 5 OF 778

PL April 17, 2023

16 An Applied Lambda-Calculus 630

16.1 FL with recursion 630
16.2 Motivation and Organization 631
16.3 Static Semantics of FL(X) 638
16.3.1 Type-checking FL(X) terms 639

16.3.2 The Typing Rules 640

16.4 Equational Reasoning in FL(X) 647
16.5 Apeerrpxy with typerules ... o000 676
17 Formal Semantics of Languages 694
17.0.1 l-values, r-values, aliasing and indirect addressing 700

17.1 The Semantics of Expressions in FL(X) 705
17.2 The Operational Semantics of Commands 716

- [< 1 > 1 = Tl B B T

PL April 17, 2023

17.3 Loop unrolling 729

B

17.4 The Operational Semantics of Declarations 740
17.5 The Operational Semantics of Subroutines 753
18 Logic Programming and Prolog 762
<< | ‘ < | ‘ > | ‘ >> Go Back | ‘ FULL SCREEN | ‘ CLOSE | ‘ 7 OF 778

PL April 17, 2023

1.

The Programming Languages Overview

B

<<«

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

8 OF 778

What is a Programming Language?

e A (linear") notation for the precise, accurate and complete description of
algorithms and data-structures implementable on a digital computer.

e [n contrast,
— the usual mathematical notation is accurate and precise enough for human

beings but is not necessarily implementable on a digital computer,

— and often the usual mathematical notation is not linear (think of integrals
or matrices).

— pseudo-code for algorithms and data-structures is too abstract” to be
directly executed on a digital computer or even a virtual computer.

e A program is a sentence in a programming language intended to describe
algorithms designed for a universal computing machine.

e While algorithms terminate not all programs may terminate.

“.e. a sequence of characters

|

b . 1 L B -3 . P n . ..
Ioo Hany 1mp<1ementar1ﬂ>n cletaﬂ»s are eI ”l?[' le1t uyépecme or 1mph(31t. ’
PL April 17, 2023

<< Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 9 OF 778

The World of PLs

e There are just too many actual programming languages and more are being
designed every year. Impossible to master every new PL that is released.

e Often impossible to master every feature of even the PLs that are currently
In use.

e Often not necessary to master all features of a PL.

|

<«

PL April 17, 2023

Why Study the subject of PL? - 1

To understand the various major paradigms of programming.

e The same algorithm requires different design considerations in different
paradigms.

e Different data-structures as part of the language,
e Different libraries provided along with the language implementation.

e Different styles of thought involved in the implementation.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Why Study the subject of PL? - 2

To understand the major features and their implementation common to large
numbers of PlLs.

e The same feature may be implemented differently in different PLs.

e The same algorithm is written differently in different PLs of the same
paradigm depending upon
— the data-structures available,
— the control structures available,

—the libraries available.

|

| ’ b | ’ > | ’ >> PL April 17, 2023 : | ’

Why Study the subject of PL? - 3

To understand the major design and architectural considerations common to
most PLs.

e Whether a data- or control-structure is part of the programming language
itself.

e Whether certain complex (data- and control-)structures are provided as li-
braries of the programming language.

|

<< | > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 13 OoF 778
| ’ | ’ | ’ PL April 17, 2023 -

Architectural Considerations in PL

e Compilation vs Interpretation

e Portability considerations across hardware architectures
e Virtual machines or target architectures.

e Stack architecture vs. register architecture.

e Representation and typing.

e The set of intermediate languages/representation required for the implemen-
tation.

e Support for parallelism.

|

<«

PL April 17, 2023

Programs: Source to Runs

Source | Linked
> Compiler/ | IR IR
— | Interpreter Linker Loader
Compilation Linking
Errors Errors
Translated
Source
> Macro—
Y processor

Pre—processor

Macro—translation
Errors

Pre—processing

Errors

|

<<

> >

PL April 17, 2023

Target .
code Runtime | Results
System
Loading Runtime
Errors Errors

Go BAck

| |

FuLL SCREEN

| ’ CLOSE

| |

15 oF 778

| |

Programs: Source to Runs-2

Source
> Compiler/ | IR .
— | Interpreter Linker
Compilation
Errors

» Macro—

Y

Pre—processor

Pre—pro
Errors

Linked
IR Runtime | Results
Loader
System
Assembly
Linking -code » Runtime
Errors . Assembler Errors
Loading
Errors Machine
code
Translated
Source

processor

Macro—translation
Errors

cessing

|

<<

PL April 17, 2023

Y

Assembling
Errors

Go BAck

| ’ FuLL SCREEN

== 1

16 oF 778

| |

Programs: Source to Runs-1: IATEX

Source avi pdf _ Render
TeX Linked dvionds > Display ——
1 V1
latex tox| Compiler/ | IR . IR p or Output
Wi | Interpreter Linker | Printer
dvi2ps i el
Print
ps ' Target
- o Postscript printer
Compilation Linking Processor d
Errors Errors code
Translated TeX
latex source Source
- LaTeX
lat —
W source atex source Macro
Y processor
noweave
Pre—processor
notangle Macro—translation
Errors
-
Pre—processing Source Program
Errors
:H << | ’ < | ’ > | ’ »>> PL April 17, 2023 Go BAck | ’ FULL SCREEN | ’ CLOSE | ’ 17 or 778 | ’

Programs: Source to Runs-2: IATEX

|

o Display
Source i pdf . ‘Render
TeX Linked T Display ——
1 \ Vl)
latex .tex Compller/ IR . IR ”::,’B ,,, R S \Output
W e | Interpreter Linker il Printer |
| dvi2ps ——
1 ' Print
| ps . Target }
v | - Postscript printer |
Compilation Linking Processor | code
Errors Errors « | | 2=)
Printer
Translated TeX
latex source LaTeX Source
lat _
W source alex source MaCfO
Y processor
noweave
Pre—processor
notangle Macro—translation
Errors
-
Pre—processing Source Program
Errors
<< | ’ < | ’ > > PL April 17, 2023 ’ Go BAck | ’ FULL SCREEN | ’ CLOSE | ’ 18 OF 778 | ’

Programs: Source to Runs: Java

Java Java Virtual Machine (JVM)
Source bytecode !

; , Linked | Target .

Java Compiler/ | IR IR code | Runtime || Results
Interpreter Linker { Loader » ‘

class | System
Compilation Linking Loading Runtime
Errors Errors Errors Errors
| ’ > | ’ >> Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 19 or 778 | ’

PL April 17, 2023

The Landscape of General Pls

B

CCCCC

The Usage of General PLs

1955

1975

The Major Features of General PLs

Static Memory alloc.
- Static scoping

. Untyped

untime stack
mamic memory alloc.

_Statically scoped

TR

=

\\'\.\ %

Ri
D

/| Dynamic allé'c
:.l’ Heap alloc | I.I

Il || Static|

Heap alloc.
Dynamic scope

Dynamic Memory alloc.

I"'l

\:b Dynamic scope
prnamic Memory allocation

scope

Statiq scope
Heap|alloc
Strong typing
Runtime stack

B

| | FULL SCREEN

CLOSE

22 OF 778

/
1980 // /
1985
1990
1995
Static scope
Static types
Runtime stack
Heap alloc.
2000 m
b | | | | > | | 14 g | . Go Back
PL April 17, 2023

FORTRAN
e The very first high-level programming language
e Still used in scientific computation
e Did not allow recursion
e Static memory allocation (since no recursion was allowed)
e VVery highly compute oriented
e Runs very fast because of static memory allocation

e Parameter passing by reference

:| ’ << | ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

COBOL

e A business oriented language
e Did not allow recursion

e Extremely verbose

e VVery highly input-oriented

e Meant to manage large amounts of data on disks and tapes and generate
reports

e Not computationally friendly

|

<«

PL April 17, 2023

LisP
e First functional programming language
e Recursion allowed and extensively used
e Introduced lists and list-operations as the only data-structure
e Introduced symbolic computation
e Much favoured for Al and NLP programming for more than 40 years

e The first programming language whose interpreter could be written in itself.

|

<«

PL April 17, 2023

ALGOL-60

e Introduced the Backus-Naur Form (BNF) for specifying the syntax of a
programming langauge

e Formal syntax defined by BNF (an extension of context-free grammars)
e First imperative language to implement recursion

e Introduction of block-structure and nested scoping

e Dynamic memory allocation

e Introduced the call-by-name parameter passing mechanism

|

<<

PL April 17, 2023

Pascal

e ALGOL-like language meant for teaching structured programming

e Introduction of new data structures — records, enumerated types, sub-range
types, recursive data-types

e |Its simplicity led to its “dialects” being adopted for expressing algorithms in
pseudo-code

e First language to be ported across a variety of hardware and OS platforms —
introduced the concepts of virtual machine and intermediate code (bytecode)

|

<«

PL April 17, 2023

ML

e First strongly and statically typed functional programming language

e Created the notion of an inductively defined type to construct complex types
e Parametric polymorphism allowing code reuse and type-instantiation.

e Powerful pattern matching facilities on complex data-types.

e Introduced type-inference, thus making declarations unnecessary except in
special cases

e [ts module facility is inspired by the algebraic theory of abstract data types

e The first language to introduce functorial programming between algebraic
structures and modules

|

<«

PL April 17, 2023

Prolog

e First declarative programming language

e Uses the Horn clause subset of first-order logic

e Goal-oriented programming implementing a top-down methodology
e Implements backtracking as a language feature

e Powerful pattern-matching facilities like in functional programming

e Various dialects implement various other features such as constraint pro-
gramming, higher-order functions etc.

|

<«

PL April 17, 2023

2.

Introduction to Compiling

B

<<«

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

30 OF 778

Introduction to Compiling

e Translation of programming languages into executable code

e But more generally any large piece of software requires the use of compiling
techniques.

e The processes and techniques of designing compilers is useful in designing
most large pieces of software.

e Compiler design uses techniques from formal language theory, automata
theory, data structures and algorithms and computability theory.

|

<«

PL April 17, 2023

Software Examples

Some examples of other software that use compiling techniques

e Almost all user-interfaces require scanners and parsers to be used.
o All XML-based software require interpretation that uses these techniques.

e All mathematical text formatting requires the use of scanning, parsing and
code-generation techniques (e.g. IATEX).

e Model-checking and verification software are based on compiling techniques

e Synthesis of hardware circuits requires a description language and the final
code that is generated is an implementation either at the register-transfer
level or gate-level design.

|

<«

PL April 17, 2023

Books and References

1. Appel A W. Modern Compiler Implementation in Java Cambridge
University Press, Revised Indian Paperback edition 2001

2.Aho A V, Sethi R, Ullman J D. Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley 1986.

3. Muchnick S S. Advanced Compiler Design and Implementation, Aca-
demic Press 1997.

|

Go B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

A Plethora of Languages: Compiling

written iIn

In general a compiler /interpreter for a a language

some language C translates code written in & to a target language 7.
S

Target 7

Language of the compiler/interpreter C

Our primary concern. Compiling from a high-level
language to a target language using a high-level language C.

|

programming

| ’ h | ’ > | ’ >> PL April 17, 2023 0 Aok | ’

A Plethora of Languages: Source
The language & could be
e a programming language, or
e a description language (e.g. Verilog, VHDL), or
e a markup language (e.g. XML, HTML, SGML, IATEX) or

e even a "'mark-down” language to simplify writing code.

|

B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

A Plethora of Languages: Target
The Target language 7 could be
e an intermediate language (e.g. ASTs, IR, bytecode etc.)
e another programming language, assembly language or machine language, or
e a language for describing various objects (circuits etc.), or
e a low level language for execution, display, rendering etc. or

e even another high-level language.

|

<< | > > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 36 OF 778
| ’ | ’ | ’ PL April 17, 2023 :

https://en.wikipedia.org/wiki/Bytecode

The Compiling Process

Besides &, C and T there could be several other intermediate languages
T1,Z9,... (also called intermediate representations) into which the
source program could be translated in the process of compiling or interpret-
ing the source programs written in &. In modern compilers, for portability,
modularity and reasons of code improvement, there is usually at least one
intermediate representation.

Some of these intermediate representations could just be data-types of a mod-
ern functional or object-oriented programming language.

|

<< < » »> i Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 37 OF 778
| ’ | ’ | ’ PL April 17, 2023 -

Compiling as Translation

Except in the case of a source to source translation (for example, a Pascal to C
translator which translates Pascal programs into C programs), we may think of
the process of compiling high-level languages as one of transforming programs
written in & into programs of lower-level languages such as the intermediate
representation or the target language. By a low-level language we mean that
the language is in many ways closer to the architecture of the target language.

|

= e |
PL April 17, 2023

Phases of a Compiler

A compiler or translator is a fairly complex piece of software that needs to be
developed in terms of various independent modules.

In the case of most programming languages, compilers are designed in phases.

The various phases may be different from the various passes in compilation.

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 39 oF 778
PL April 17, 2023

Phases vs. Passes

Several phases may be combined into a single pass, which essentially means
that even though we describe the phases as the different transformations the
whole source program undergoes, in reality various phases can be undertaken
in a single pass with partial or incomplete information about the whole source
program.

Most modern programming languages are designed so that a compiler for th
elanguage does not require more than 2 passes

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 40 OF 778
PL April 17, 2023

The Big Picture: 1

stream of
characters
SCANNER

stream of
tokens

:H b | | < | | > ||

> >

Go B
PL April 17, 2023 O DACK

| |

FuLL SCREEN

| |

CLOSE

| |

41 OoF 778

| |

The Big Picture: 2

stream of
characters

‘ SCANNER ‘

stream of
tokens

‘ PARSER ‘

i parse tree

|

<<

Go B
>> PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

42 OF 778

| |

The Big Picture: 3

stream of
characters

SCANNER ‘

stream of
tokens

PARSER ‘

i parse tree

‘ SEMANTIC ANALYZER ‘

abstract
syntax tree

|

<<

> >

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

43 OF 778

| |

The Big Picture: 4

stream of
characters

‘ SCANNER ‘

stream of
tokens

‘ PARSER ‘

i parse tree

‘ SEMANTIC ANALYZER ‘

abstract
syntax tree

‘ I.R. CODE GENERATOR ‘

intermediate
representation

|

<<

Go B
>> PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

44 OF 778

| |

The Big Picture: 5

stream of
characters

‘ SCANNER ‘

stream of
tokens

‘ PARSER ‘

i parse tree

‘ SEMANTIC ANALYZER ‘

abstract
syntax tree

‘ I.R. CODE GENERATOR ‘

intermediate
representation

‘ OPTIMIZER ‘

optimized
intermediate
representation

|

<<

Go B
>> PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

45 OF 778

| |

The Big Picture: 6

stream of
characters

‘ SCANNER ‘

stream of
tokens

‘ PARSER ‘

i parse tree

‘ SEMANTIC ANALYZER ‘

abstract
syntax tree

‘ I.R. CODE GENERATOR ‘

intermediate
representation

‘ OPTIMIZER ‘

optimized
intermediate
representation

} CODE GENERATOR ‘

target code

|

<<

Go B
>> PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

46 OF 778

| |

The Big Picture: 7

stream of
characters

SCANNER ‘
stream of \
tokens

‘

PARSER ‘<—>

i parse tree

ERROR-

SEMANTIC ANALYZER ‘<—>

HANDLER

abstract
syntax tree

I.R. CODE GENERATOR ‘

T

intermediate
representation

SYMBOL

TABLE
MANAGER

OPTIMIZER

optimized
intermediate
representation

} CODE GENERATOR ‘

target code

|

<<

H >>

Go BAck

PL April 17, 2023

| |

The Big Picture: 8

stream of
characters

SCANNER

stream of \
tokens

ERROR-

HANDLER

<—>‘ PARSER ‘<—>

¢ parsetree

4—4 SEMANTIC ANALYZER F—>

abstract
syntax tree

‘ I.R. CODE GENERATOR ‘

‘ OPTIMIZER ‘

optimized
intermediate
representation

} CODE GENERATOR ‘

target code

intermediate
\ representation/

SYMBOL

TABLE
MANAGER

‘ Scanner ‘ Parser

‘ Semantic Analysis ‘ Symbol Table

‘ IR ‘ Run-time structure

|

<<

| |

>> | PL April 17, 2023 ’

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

48 OF 778

| |

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

49 OF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

50 OF 778

3.

Scanning or Lexical Analysis

Lexical Analysis

|

<<

>>

Go B
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

51 OF 778

Programming Language Elements

e Every language is built from a finite alphabet of symbols. The alphabet
of a programming language (nowadays) consists of the symbols of the ASCII
character set”.

e Each language has a vocabulary consisting of words. Each word is a
string of (printable non-whitespace) symbols drawn from the alphabet.

e Each language has a finite set of punctuation symbols, which separate
phrases, clauses and sentences.

e A programming language also has a finite set of operators.

e The phrases, clauses and sentences of a programming language are expres-
sions, commands, functions, procedures and programs.

“Previously there were others such as BCD and EBCDIC which are no longer used.

|

<< < > >> . Go Back | ’ FULL SCREEN | ’ CLOSE | ’ 52 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ -

https://ascii-tables.com/
https://en.wikipedia.org/wiki/BCD_(character_encoding)
https://en.wikipedia.org/wiki/EBCDIC

Lexical Analysis
lex-i-cal: relating to words of a language

e A source program (usually a file) consists of a stream of characters.

e Given a stream of characters that make up a source program the compiler
must first break up this stream into a sequence of “lexemes”, and other
symbols.

e Each such lexeme is then classified as belonging to a certain token type.

e Certain lexemes may violate the pattern rules for tokens and are considered
erroneous.

e Certain sequences of characters are not” tokens and are completely ignored
(or skipped) by the compiler.

“E.g. comments

|

<< < > >> . Go BAck | ’ FULL SCREEN | ’ CLOSE | ’ 53 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ -

Erroneous lexemes

Some lexemes violate all rules of tokens. Some examples common to most
programming languages

e 12ab would not be an identifier or a number in most programming languages.
If it were an integer in Hex code it would be written 0x12ab.

e 127.0.1 is usually not any kind of number. However 127.0.0.1 may be a
valid token representing an |P address.

|

<< | > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 54 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ :

e [okens

e Non-tokens

Tokens and Non-tokens: 1

|

<<

Go B | |
>> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

Tokens and Non-tokens: 2

Tokens. Typical tokens are

e Constants: Integer, Boolean, Real, Character and String constants.
e Identifiers: Names of variables, constants, procedures, functions etc.
e Keywords/Reserved words: void, public, main

e Operators:+, *x, /

e Punctuation: ,, :, .

e Brackets: (,), [,], begin, end, case, esac

Non-tokens

|

<< | ’ | | ’ > | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 56 OF 77

PL April 17, 2023

Tokens and Non-tokens: 3
Tokens
Non-tokens. Typical non-tokens are

e whitespace: sequences of tabs, spaces, new-line characters,
e comments: compiler ignores comments

e preprocessor directives: #include ..., #define

e macros in the beginning of C programs

:| ’ << | ’ | | ’ > | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE

Scanning: 1

During the scanning phase the compiler/interpreter
e takes a stream of characters and identifies tokens from the lexemes.
e Eliminates comments and redundant whitepace.

e Keeps track of line numbers and column numbers and passes them as pa-
rameters to the other phases to enable error-reporting and handling to the
user.

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 58 OF 778
PL April 17, 2023

https://en.wikipedia.org/wiki/White_space

Scanning: 2

Definition 3.1 A lexeme is a basic lexical unit of a language consisting of
one word or several words, the elements of which do not separately convey the
meaning of the whole.

e Whitespace: A sequence of space, tab, newline, carriage-return, form-feed
characters etc.

e Lexeme: A sequence of non-whitespace characters delimited by whitespace
or special characters (e.g. operators or punctuation symbols)

e Examples of lexemes.

— reserved words, keywords, identifiers etc.
— Each comment is usually a single lexeme

— preprocessor directives

|

<< < > > X Go BAck | ’ FULL SCREEN | ’ CLOSE | ’ 59 OF 778 | ’
| ’ | ’ | ’ PL April 17, 2023 ’ -

Scanning: 3
Definition 3.2 A token consists of an abstract name and the attributes of a

lexeme.

e Token: A sequence of characters to be treated as a single unit.
e Examples of tokens.

— Reserved words (e.g. begin, end, struct, if etc.)

— Keywords (integer, true etc.)

— Operators (+, &&, ++ etc)

— Identifiers (variable names, procedure names, parameter names)
— Literal constants (numeric, string, character constants etc.)

— Punctuation marks (:, , etc.)

<< | > > > | . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 60 OF 778
:| ’ | ’ | ’ | ’ PL April 17, 2023 o

Scanning: 4

e |[dentification of tokens is usually done by a Deterministic Finite-state au-

tomaton (DFA).

e The set of tokens of a language is represented by a large regular expression.

e This regular expression is fed to a lexical-analyser generator such as Lex,
Flex or JLex.

e A giant DFA is created by the Lexical analyser generator.

|

<«

PL April 17, 2023

Lexical Rules
e Every programming language has lexical rules that define how a token is
to be defined.
Example. In most programming languages identifiers satisfy the following
rules.
1. An identifier consists of a sequence of of letters (A ...Z, a ...z), digits
(0 ...9) and the underscore () character.
2. The first character of an identifier must be a letter.

e Any two tokens are separated by some delimiters (usually whitespace) or
non-tokens in the source program.

<<«

PL April 17, 2023

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

63 OF 778

| [

3.1.

Regular Expressions

Regular Expressions

<<

| 4.4

Go B
PL April 17, 2023 0 PAR

FuLL SCREEN

CLOSE

64 OF 778

| [

Consider the string 11/12/20217 What does this string of characters represent? There are at least the following different
possibilities.

e In a school mathematics text it might represent the operation of division (11/12)/2021, i.e the fraction 11/12 divided
by 2021, yielding the value .00045357083951839023.

e To a student who is confused, it may also represent the operation of division 11/(12/2021) i.e. the result of dividing 11
by the fraction 12/2021 yielding the value 1852.58333333333333569846.

e In some official document from India it might represent a date (in dd/mm/yyyy format) viz. 11 December 2021".

e In some official document from America it might represent a different date (in mm/dd/yyyy format) viz. November 12,
20217,

The ambiguity inherent in such representations requires that (especially if the school mathematics text also uses some date
format in some problems) a clearer specification of the individual elements be provided. These specifications of individual
elements in programming languages are provided by lexical rules. These lexical rules specify “patterns” which are legal for
use in the language.

IHave you heard of the 26/11 attack?
2Have you heard of the 9/11 attack?

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 65 OF 778
PL April 17, 2023 Cor o

| |

https://www.youtube.com/watch?v=lAoTnw416Lo
https://www.youtube.com/watch?v=GySgEL4NRFY

Specifying Lexical Rules

We require compact and simple ways of specifying the lexical rules of the tokens
of a language. In particular,

e there are an infinite number of legally correct identifiers (names) in any
programming language.

e we require finite descriptions/specifications of the lexical rules so that
they can cover the infinite number of legal tokens.

One way of specifying the lexical rules of a programming language is to use
regular expressions.

<<

PL April 17, 2023

Regular Expressions Language

e Any set of strings built up from the symbols of A is called a language. A*
is the set of all finite strings built up from A.

e Each regular expression is a finite sequence of symbols made up of
symbols from the alphabet and other symbols called operators.

e A regular expression may be used to describe an infinite collection of
strings.

<< | ’ | | ’ > | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 67 OF 778

PL April 17, 2023

Regular Expressions for ldentifiers

Example 3.3 The regular expression used to define the set of possible identi-
fiers as defined by the rules is

A —Za—z||[A—-Za—z0—-9]"
e The letters and digits in bold blue and _ denote symbols drawn from the

alphabet, consisting of lower-case, upper-case letters, digits and _.

e The other symbols in blue — the brackets “| ", “| ", hyphen “—" and
asterisk “*"” — are operator symbols of the language of regular expressions.

e The hyphen operator “—" allows for range specifications in the ASCII al-
phabet.

o The asterisk “*" specifies “0 or more occurrences” of the symbols within
the brackets.

<<

| ’ - | ’ < | ’ >> PL April 17, 2023 AR | ’

Concatenations

Consider a (finite) alphabet (of symbols) A.

e Given any two strings x and ¥y in a language, x.y or simply xy is the con-
catenation of the two strings.

Example 3.4 Given the strings x+ = Mengesha and y = Mamo, z.y =
MengeshaMamo and y.x = MamoMengesha.

e Given two languages X and Y, then X.Y or simply XY is the concate-
nation of the languages.

Example 3.5Let X = {Mengesha,Gemechis} and Y =
{Mamo, Bekele, Selassie}. Then

XY = {MengeshaMamo, MengeshaBekele, MengeshaSelassie,
GemechisMamo, GemechisBekele, GemechisSelassie}

<<

| ’ b | ’ > | ’ >> | PL April 17, 2023 ’

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 69 orF 778

Note on the Concept of “language”.

Unfortunately we have too many related but slightly different concepts, each of which is simply called a
“language”. Here is a clarification of the various concepts that we use.

e Every language has a non-empty finite set of symbols called letters. This non-empty finite set is called
the alphabet.

e Each word is a finite sequence of symbols called letters.

e The words of a language usually constitute its vocabulary. Certain sequences of symbols may not form
a word in the vocabulary. A vocabulary for a natural language is defined by a dictionary, whereas for a
programming language it is usually defined by formation rules.

e A phrase, clause or sentence is a finite sequence of words drawn from the vocabulary:.
e Lvery natural language or programming language is a finite or infinite set of sentences.

e In the case of formal languages, the formal language is the set of words that can be formed using the
formation rules. The language is also said to be generated by the formation rules.

There are a variety of languages that we need to get familiar with.

| > | ’ > > | . ’ Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 70 OF 778 |
b | ’ | ’ PL April 17, 2023 Y E

Natural languages. These are the usual languages such as English, Hindi, French, Tamil which we employ
for daily communication and in teaching, reading and writing.

Programming languages. These are the languages such as C, Java, SML, Perl, Python etc. that are used
to write computer programs in.

Formal languages. These are languages which are generated by certain formation rules.

Meta-languages. These are usually natural languages used to explain concepts related to programming
languages or formal languages. We are using English as the meta-language to describe and explain concepts
in programming languages and formal languages.

In addition, we do have the concept of a dialect of a natural language or a programming language. For
example the natural languages like Hindi, English and French do have several dialects. A dialect (in the case
of natural languages) is a particular form of a language which is peculiar to a specific region or social group.
Creole (spoken in Mauritius) is a dialect of French, Similarly Brij, Awadhi are dialects of Hindi. A dialect
(in the case of programming languages) is a version of the programming language. There are many dialects of

C'and C++. Similarly SML-NJ and poly-ML are dialects of Standard ML. The notion of a dialect does not
really exist for formal languages.

<<

< > | ’ > > . Go Back | ’ FuLL SCREEN | ’ CLOSE | ’ 71 OF 778
| ’ | ’ PL April 17, 2023 7 7

https://www.google.co.in/search?q=meaning+dialect&oq=meaning+dialect&aqs=chrome.0.0l6.3590j1j7&sourceid=chrome&ie=UTF-8

Closer home to what we are discussing, the language of regular expressions is a formal language which describes
the rules for forming the words of a programming language. FEach regular expression represents a finite or infinite
set of words in the vocabulary of a programming language. We may think of the language of regular expressions
also as a functional programmaing language for describing the vocabulary of a programming language. It allows
us to generate words belonging to the vocabulary of a programming language

Any formally defined language also defines an algebraic system of operators applied on a carrier set. Every
operator in any algebraic system has a pre-defined arity which refers to the number of operands it requires.
In the case of regular expressions, the operators are concatenation and alternation are 2-ary operators (binary
operators), whereas the Kleene closure and plus closure are 1-ary operators (unary). In addition the letters of
the alphabet, which are constants may be considered to be operators of arity 0.

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 72 OF 778
| ’ | ’ | ’ PL April 17, 2023 '

|

Simple Language of Regular Expressions

We consider a simple language of regular expressions. Assume a
(finite) alphabet A of symbols. Each regular expression r denotes a set of strings
L(r). L(r) is also called the language specified by the regular expression 7.

Symbol. For each symbol a in A, the regular expression a denotes the set
{a).

(Con)catenation. For any two regular expressions r and s, r.s or simply rs
denotes the concatenation of the languages specified by » and s. That is,

L(rs) = L(r)L(s)

<<«

PL April 17, 2023

Epsilon and Alternation

Epsilon. ¢ denotes the language with a single element the empty string ¢

or ("),
£l ={eh={""}

Alternation. Given any two regular expressions and s, r|s is the set union
of the languages specified by the individual expressions r and s respectively.

L(r|s)=L(r)UL(s)

Example £(Menelik|Selassie|e) = {Menelik, Selassie,c}.

<< | ’ | | ’ | | ’ > > PL April 17, 2023 Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’

String Repetitions

For any string x, we may use concatenation to create a string y with as many

repetitions of x as we want, by defining repetitions by induction.

xo — 290
=z

2 =z

et — et = 2Ny

z* ={z" | n>0}

<<«

> > | Go BAck

PL April 17, 2023 ’

String Repetitions Example

Example. Let x = Selassie. Then

ZEO — "

:z:l — Selassie

x2 — SelassieSelassie

:1:5 — SelassieSelassieSelassieSelassieSelassie

Then x* is the language consisting of all strings that are finite repetitions of
the string Selassie

<<«

PL April 17, 2023

Language lteration

The * operator can be extended to languages in the same way. For any
language X, we may use concatenation to create a another language Y with

as many repetitions of the strings in X as we want, by defining repetitions by
induction. Hence if X is nonempty, then we have

XO — {7777} Xl — X
X2 = XX X°=X?X

In general X" = X. X" = X" X and
n>0

| ’ | | ’ | | ’ > > . ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 77 OF 778
PL April 17, 2023

Language lteration Example

Example 3.6 Let X = {Mengesha, Gemechis}. Then

XV ={"}

X! = {Mengesha, Gemechis}

X? = {MengeshaMengesha, GemechisMengesha,
MengeshaGemechis, GemechisGemechis}

X3 = {MengeshaMengeshaMengesha, GemechisMengeshaMengesha,
MengeshaGemechisMengesha, GemechisGemechisMengesha,
MengeshaMengeshaGemechis, GemechisMengeshaGemechis,
MengeshaGemechisGemechis, GemechisGemechisGemechis}

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 78 OF 778 |
| ’ | ’ | ’ PL April 17, 2023 ' !

Kleene Closure

Given a regular expression r, " specifies the n-fold iteration of the language
specified by 7.

Given any regular expression r, the Kleene closure of r, denoted r* specifies
the language (L(r))*.
In general

T*:TO‘Tl‘ ‘TnJrl‘

denotes an infinite union of languages.
Further it is easy to show the following identities.

r* = elr.r” (1)
o () B

<<«

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Plus Closure

The Kleene closure allows for zero or more iterations of a language. The
+-closure of a language X denoted by X and defined as

Xt = U X"
n>0

denotes one or more iterations of the language X.

Analogously we have that 7 specifies the language (£(r))™.

Notice that for any language X, X = X.X* and hence for any regular
expression r we have

We also have the identity (1)

<<«

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Range Specifications

We may specify ranges of various kinds as follows.

ela—c|=a|b|c Hence the expression of Question 3 may be specified
as [a — cl*.

e Multiple ranges: |a—c0—3]=[a—c| | [0 — 3]

<<«

PL April 17, 2023

Exercise 3.1

1. If X = 0 what are X°, X" forn >0 and X*?
2. Try to understand what the reqular expression for identifiers really specifies.

3. Modify the regular expression so that all identifiers start only with upper-case letters.

4. Give reqular expressions to specify

e real numbers in fixed decimal point notation
e real numbers in floating point notation

e real numbers in both fixed decimal point notation as well as floating point notation.

<< | ’ | | ’ | | ’ > > Go BACK | ’ FuLL SCREEN

PL April 17, 2023

CLOSE

| |

82 OF 778

|

Equivalence of Regular Expressions

Definition 3.7 Let REGE X Py denote the set of regular expressions over a
a finite non-empty set of symbols A and let r,s € REGEX Py. Then

or Spr ifandonly if L(r) C L(s) and

e they are equivalent (denoted r =, s) if they specify the same language,

I.e.

r =p s if and only if L(r) = L(s)

We have already considered various identities (e.g. (1)) giving the equivalence
between different regular expressions.

: | |
| ’ b | ’ > | ’ > PL April 17, 2023 °

Notes on bracketing and precedence of operators

In general regular expressions could be ambiguous (in the sense that the same expression may be interpreted to refer to
different languages. This is especially so in the presence of

e multiple binary operators

e some unary operators used in prefix form while some others are used in post-fix form. The Kleene-closure and plus
closure are operators in postfix form. We have not introduced any prefix unary operator in the language of regular
expressions.

All expressions may be made unambiguous by specifying them in a fully parenthesised fashion. However, that leads to
too many parentheses and is often hard to read. Usually rules for precedence of operators is defined and we may use the
parentheses “(“ and “)” to group expressions over-riding the precedence conventions of the language.

For the operators of regular expressions we will use the precedence convention that | has a lower precedence than . and that
all unary operators have the highest precedence.

Example 3.8 The language of arithmetic expressions over numbers uses the “BDMAS” convention that brackets have the
highest precedence, followed by division and multiplication and the operations of addition and subtraction have the lowest
precedence.

<<

| | ’ > | ’ > > i Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 84 OF 778
| ’ PL April 17, 2023 H

|

Example 3.9 The regular expression r.s|t.u is ambiguous because we do not know beforehand whether it represents (r.s)|(t.u)
or r.(s|t).u or even various other possibilities. By specifying that the operator | has lower precedence than . we are disam-
biguating the expression to mean (r.s)|(t.u).

Example 3.10 The language of arithmetic expressions can also be extended to include the unary post-fix operation in which
case an expression such as —a! becomes ambiguous. It could be interpreted to mean either (—a)! or —(a!). In the absence of
a well-known convention it is best adopt parenthesisation to disambiguate the expression.

Besides the ambiguity created by multiple binary operators, there are also ambiguities created by the same operator and in
deciding in what order two or more occurrences of the same operator need to be evaluated. A classic example is the case of
subtraction in arithmetic expressions.

Example 3.11 The arithmetic expression a — b — ¢, in the absence of any well-defined convention could be interpreted to
mean either (a —b) — ¢ or a — (b — ¢) and the two interpretations would yield different values in general. The problem does
not exist for operators such addition and multiplication on numbers, because these operators are associative. Hence even
though a + b+ ¢ may be interpreted in two different ways, both interpretations yield identical values.

Example 3.12 Another non-associative operator in arithmetic which often leaves students confused is the exponentiation

operator. Consider the arithmetic expression a*. Fora =2, b =3, ¢ = 4 is this expression to be interpreted as a®) or as
(a®)e?

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 85 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’

Exercise 3.2

1. For what reqular expression r will r* specify a finite set?

2. How many strings will be in the language specified by (a | b | ¢)"?

3. Give an informal description of the language specified by (a | b | ¢)*?
4. Give a reqular expression which specifies the language {a* | k > 100}.

5. Simplify the expression r*.r*, i.e. give a simpler reqular expression which specifies the same language.

6. Simplify the expression r*.r".

<<

< > | ’ > > . Go Back | ’ FuLL SCREEN | ’ CLOSE | ’ 86 OF 778
| ’ | ’ PL April 17, 2023 7

| L

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

87 OF 778

|

3.2.

Nondeterministic Finite Automata (NFA)

Nondeterministic Finite Automata (NFA)

<<

p . | | | Go | [s
| ’ | ‘ > > PL April 17, 2023 0 BAcCk ULL SCREEN

| |

CLOSE

| |

88 OF 778

| L

Nondeterministic Finite Automata

A regular expression is useful in defining a finite state automaton. An automa-
ton is a machine (a simple program) which can be used to recognize any valid
lexical token of a language.

A nondeterministic finite automaton (NFA) N over a finite alphabet
A consists of

e a finite set () of states,
e an initial state gy € Q,

e a finite subset /' C () of states called the final states or accepting
states, and

e a transition relation —C @ x (AU {e}) x Q.

b | ’ b | ’ > | ’ >> | PL April 17, 2023 ’

What is nondeterminstic?
e The transition relation may be equivalently represented as a function
—:Q x (AU{e}) = 2¥
that for each source state ¢ € () and symbol a € A associates a set of
target states.
e |t is non-deterministic because for a given source state and input symbol,

—there may not be a unique target state, there may be more than one, or
—the set of target states could be empty.

e Another source of non-determinism is the empty string ¢.

<< | > > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 90 oF 778 |
| ’ | ’ | ’ PL April 17, 2023 : E

Nondeterminism and Automata

e In general the automaton reads the input string from left to right.
e It reads each input symbol only once and executes a transition to new state.

e [he ¢ transitions represent going to a new target state without reading any
input symbol.

e The NFA may be nondeterministic because of
—one or more ¢ transitions from the same source state different target

states,

—one or more transitions on the same input symbol from one source state
to two or more different target states,

— choice between executing a transition on an input symbol and a transition
on € (and going to different states).

<<

| ’ | | ’ > | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 91 oF 77

Acceptance of NFA

e For any alphabet A, A* denotes the set of all (finite-length) strings of symbols
from A.

e Given a string x = ajas...a, € A", an accepting sequence is a se-
quence of transitions

€ 3-1\ 8\ E ag 5\an\ 8\
QOH > /q1_>_> > > /qn

where g, € F' is an accepting state.
e Since the automaton is nondeterministic, it is also possible that there exists
another sequence of transitions

€ al E /] £ ag € anp & /
q — - - N >Q1HH N N >

where ¢/, is not a final state.

<<

e The automaton accepts z, if there is an accepting sequence for x.
FuLL SCREEN ’ CLOSE | ’ 92 OF 778 | E

Go B |
| ’ - | ’ < | ’ >> | PL April 17, 2023 ’ 0 AcK

Language of a NFA

e The language accepted or recognized by a NFA is the set of strings that
can be accepted by the NFA.

e L(N) is the language accepted by the NFA N.

| ’ b | ’ > | ’ >> PL April 17, 2023 | ’

Construction of NFAs

e \WWe show how to construct an NFA to accept a certain language of strings
from the regular expression specification of the language.

e The method of construction is by induction on the structure of the regular
expression. That is, for each regular expression operator, we show how to
construct the corresponding automaton assuming that the NFAs correspond-
ing to individual components of expression have already been constructed.

e For any regular expression r the corresponding NFA constructed is denoted

Ny. Hence for the regular expression r|s, we construct the NFA NT|S using
the NFAs N, and N, as the building blocks.

e Our method requires only one initial state and one final state for each au-
tomaton. Hence in the construction of NT|S from N, and Ng, the initial
states and the final states of NV, and Ny are not initial or final unless explicitly
used in that fashion.

<<

| ’ < | ’ > | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 94 OF 77

Constructing NFA

e We show the construction only for the most basic operators on regular ex-
pressions.

e For any regular expression r, we construct a NFA N, whose initial state is
named 7 and final state 7 /.

e The following symbols show the various components used in the depiction

of NFAs.

Q Initial state
—
@ Accepting state

Typical NFA for r
Ny

a Typical transition

<< | ’ | | ’ > { > I Go-Back } { FULL SCREEN | ’ CLOSE | ’ 95 OF 778

PL April 17, 2023 |

We may also express the automaton in tabular form as follows:

Regular Expressions to NFAs:1

e @

a

O

N, Input Symbol
State| a cee g
a0 |{a;} 000

Notice that all the cells except one have empty targets.

<<

> >

PL April 17, 2023

Regular Expressions to NFAs:2

*@

€

op

N¢ Input Symbol
State|a| --- £
eo |00---0{es}
S 000 0

<<

PL April 17, 2023

Regular Expressions to NFAs:3

Nr|5 Input Symbol
State| a 3
rlsop | O |-+ {ro,s0}
ers 7’*0 o o o o o o
Ty {rls}
SO o o o
Sf {rlsr}
rlsy 0 0

GGGGGG

LLLLLLLLLL

CLOSE

Notice that the initial state of N, 5 is 7y and the final state is Sfin this case.

Regular Expressions to NFAs:4

SOk

e
ROE

Ny.s | Input Symbol
State| a £
r0

Ty {50}
SO o o o
5f

<<

| |

<

| |

>

| |

> > |

PL April 17, 2023 ’

Go

BAck

| |

FuLL SCREEN

| |

CLOSE

| |

99 orF

778

| L

Regular Expressions to NFAs:5

€

NORORNO S OR

€

N, Input Symbol
State| a | --- £

r 0 {ro, 7“;'2}
/"'O o o o
rp e o}
7“;'2 (/A 0

<<

| ’ >> | PL April 17, 2023 ’

Regular expressions vs. NFAs

e |t is obvious that for each regular expression r, the corresponding NFA N,

Is correct by construction i.e.
L(Ny) = L(r)

e Each regular expression operator

— adds at most 2 new states and
— adds at most 4 new transitions

e Every state of each N, so constructed has

—either 1 outgoing transition on a symbol from A

—or at most 2 outgoing transitions on ¢

e Hence N, has at most 2|r| states and 4|r| transitions.

<<

| ’ | | ’ > | ’ > > | . ’ Go BACK | ’ FuLL SCREEN | ’
PL April 17, 2023

Example

We construct a NFA for the regular expression (a|b)*abb.
e Assume the alphabet A = {a, b}.

e We follow the steps of the construction as given in Constructing NFA to
Regular Expressions to NFAs:5

e For ease of understanding we use the regular expression itself (subscripted
by 0 and f respectively) to name the two new states created by the regular
expression operator.

<<

PL April 17, 2023

Example:-6

Steps in NFA for (a|b)*abb

| PL April 17, 2023 ’

Example:-5

k
=

Steps in NFA for (a|b)*abb

| ’ >> | PL April 17, 2023 ’

Example:-4

Example:-3

Steps in NFA for (a|b)*abb

<<

> > | Go BAck | ’

PL April 17, 2023 ’

Example:-2

Steps in NFA for (a|b)*abb

<<

> > | Go BAck | ’

PL April 17, 2023 ’

CLOSE

| |

107 oF 778

| L

Example:-1

N(alb)>l< ab

(CRD SR

Steps in NFA for (a|b)*abb

| ’ »>> | Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 108 oF 778 |

PL April 17, 2023 ’

Example-final

(alb)* abb

€
O e S

Steps in NFA for (a|b)*abb

<<

| ’ > > | Go BACK | ’ FuLL SCREEN

PL April 17, 2023 ’

CLOSE

| |

109 oF 778

| L

Exercise 3.3 We have provided constructions for only the most basic operators on reqular expressions.

Here are some extensions you can attempt

1.
2.
3.

Show how to construct a NFA for ranges and multiple ranges of symbols
Assuming N, is a NFA for the reqular expression r, how will you construct the NFA N,+.

Certain languages like Perl allow an operator like r{k,n}, where
L(r{k,n}) = U L(r
k<m<n

Show how to construct N,g. 1 given N,.

. Consider a new regular expression operator =~ defined by L(r) = A* — L(r) What is the automaton

N~ given N, ?

Perhaps out of sheer perversity or to simply confuse students, the UNIX operating system also allows
the symbols “"7 and “$” to denote the beginning and the end of a line respectively. Consider the
reqular expression “(a|b)*abb.

<<

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 110 oF 778
| ’ | ’ | ’ PL April 17, 2023 :

(a) What is the language defined by the expression?

(b) Considering that “*” is overloaded, does it allow for the reqular expression to define multiple
different languages?

(c) Design an NFA which accepts some or all languages that the expression may denote.

|

<<

| > > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 111 or 778
| ’ | ’ | ’ PL April 17, 2023 :

| |

Scanning Using NFAs

|

<<

Go B
>> PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

112 oF 778

| |

Scanning and Automata

e Scanning is the only phase of the compiler in which
every character of the source program is read

e The scanning phase therefore needs to be defined accurately and efficiently.
e Accuracy is achieved by regular expression specification of the tokens

e Efficiency implies that the input should not be read more than once.

|

<«

PL April 17, 2023

Nondeterminism and Token Recognition

e The three kinds of nondeterminism in the NFA construction are depicted in
the figure below.

(i) (iii)

@
€ a a
eé eé aé

(i) It is difficult to know which ¢ transition to pick without reading any further
Input

(i) For two transitions on the same input symbol a it is difficult to know
which of them would reach a final state on further input.

(iii) Given an input symbol a and an ¢ transition on the current state it is
impossible to decide which one to take without looking at further input.

|

<< | > > > | . ’ Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 114 or 778
| ’ | ’ | ’ PL April 17, 2023 !

| |

Nondeterministic Features

e In general it is impossible to recognize tokens in the presence of nondeter-
minism without backtracking.

e Hence NFAs are not directly useful for scanning because of the presence of
nondeterminism.

e The nondeterministic feature of the construction of IV, for any regular ex-
pression 7 is in the ¢ transitions.

e The ¢ transitions in any automaton refer to the fact that no input character
is consumed in the transition.

e Backtracking usually means algorithms involving them are very complex and
hence inefficient.

e To avoid backtracking, the automaton should be made deterministic

|

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 115 oF 778

« | ’ b | ’ > | ’ >> | PL April 17, 2023 ’

| |

From NFA to DFA

e Since the only source of nondeterminism in our construction are the £, we
need to eliminate them without changing the language recognized by the
automaton.

e Two consecutive € transitions are the same as one. In fact any number of
€ transitions are the same as one. So as a first step we compute all finite
sequences of ¢ transitions and collapse them into a single £ transition.

e Two states ¢, ¢ are equivalent if there are only transitions between them.
This is called the e-closure of states.

|

<«

PL April 17, 2023

e-Closure

Given a set T' of states, then T, = e-closure(T') is the set of states which
either belong to 1" or can be reached from states belonging to 1" only through
a sequence of ¢ transitions.

Algorithm 3.1
e-CLOSURE (7)) &

’

Require: 7' C Q of NFA N = (Q, AU {e}, qo, F, —)
Ensures: T = ¢-CLOSURE(T)
Ie =1
repeat
TL=T5T:=TU{d | ¢ ¢T3 €T q—{}
until T; = T!

N\

I l « I l | 3 I l > Go BACK I l LLLLL SCREEN I l CLOSE I l
1 11 1 | April 17, 2023 1 11 1 1

Analysis of e-Closure

olf T'= () then T, = T in the first iteration.
e 1. can only grow in size through each iteration

e The set 7. cannot grow beyond the total set of states () which is finite.
Hence the algorithm always terminates for any NFA V.

e Time complexity: O(|Q)).

|

<«

PL April 17, 2023

Recognition using NFA

The following algorithm may be used to recognize a string using a NFA. In the
algorithm we extend our notation for targets of transitions to include sets of
sources. Thus

SL:{q/\HQES:QLQ’}
and
e-CLOSURE(S —) = U e-CLOSURE(q)

JesS—

|

<< | > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 119 or 778
| ’ | ’ | ’ PL April 17, 2023 !

Recognition using NFA: Algorithm

Algorithm 3.2
AcceprT (N, x) 4

f

Require: NFA N = (Q,AU {e}, qp, F, —>), a lexeme x
Ensures: Boolean
S = e-CLOSURE(qq); a := nextchar(x);
while a # end_of _string
do {S .= £-CLOSURE(S —):;
a := nextchar(x)

return (SN F # ()

_/\

|

Go B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

Analysis of Recognition using NFA

e Even if e-closure is computed as a call from within the algorithm, the time
taken to recognize a string is bounded by O(|z|.|Qy,|) where |Qy | is the
number of states in IV,

e The space required for the automaton is at most O(|r]).

e Given that e-closure of each state can be pre-computed knowing the NFA,
the recognition algorithm can run in time linear in the length of the input
string x i.e. O(|x|).

e Knowing that the above algorithm is deterministic once e-closures are pre-
computed one may then work towards a Deterministic automaton to reduce
the space required.

|

<< | > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 121 OF 778
| ’ | ’ PL April 17, 2023 77

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

122 oF 778

| [

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

123 oF 778

| [

3.3.

Deterministic Finite Automata (DFA)

Conversion of NFAs to DFAs

<<

< | | > | | = | o N
| ‘ PL April 17, 2023 0 PAR

FuLL SCREEN

CLOSE

124 oF 778

| [

Deterministic Finite Automata

¢ A deterministic finite automaton (DFA) is a NFA in which

1. there are no transitions on £ and

2. — vyields a exactly one target state for each source state and symbol from
A i.e. the transition relation is no longer a relation but a total function”

0:Q xA—(Q

e Clearly if every regular expression had a DFA which accepts the same lan-
guage, all backtracking could be avoided.

?Also in the case of the NFA the relation — may not define a transition from every state on every letter

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 125 oF 778 |
| ’ | ’ | ’ PL April 17, 2023 ’ !

Transition Tables of NFAs

We may think of a finite-state automaton as being defined by a 2-dimensional
table of size || X |A| in which for each state and each letter of the alphabet
there is a set of possible target states defined. In the case of a non-deterministic

automaton,
1. for each state there could be ¢ transitions to

(a) a set consisting of a single state or
(b) a set consisting of more than one state.

2. for each state ¢ and letter a, there could be

(a) an empty set of target states or
(b) a set of target states consisting of a single state or

(c) a set of target states consisting of more than one state

<<«

< > >> Go Bac | ’ o, $te | ’
| ’ l ’ l ’ l PL April 17, 2023 ’ 0 PACK ULL SCREEN

Transition Tables of DFAs

In the case of a deterministic automaton
1. there are no ¢ transitions, and

2. for each state ¢ and letter a
(a) either there is no transition in the NFA (in which case we add a new “sink”
state which is a non-accepting state)
(b) or there is a transition to a unique state ¢'.
The recognition problem for the same language of strings becomes simpler

and would work faster (it would have no back-tracking) if the NFA could be
converted into a DFA accepting the same language.

<<«

PL April 17, 2023

NFA to DFA

Let N = (Qn,AU{e}, sy, Fiy, —>) be a NFA . We would like to construct
a DFA D = <QD,A, SD,FD, %D> where

e () the set of states of the DFA

e A the alphabet (notice there is no ¢),

e sp € ()p the start state of the DFA,

e F'p the final or accepting states of the DFA and

e0p : Qp X A — (Qp the transition function of the DFA.
We would like L(N) = L(D)

S0 Bea | ’
| ’ - | ’ < | ’ > PL April 17, 2023 0 PATK

The Subset Construction

Non-determinism .
e-closure.

Subsets of NFA states.

Acceptance.

< | ‘ > | ‘ »>> i Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 129 oF 778 |
| ‘ PL April 17, 2023

The Subset Construction: Non-determinism

Non-determinism A major source of non-determinism in NFAs is the pres-
ence of £ transitions. The use of e-CLOSURE creates a cluster of “similar”
states’.

e-closure.

Subsets of NFA states.

Acceptance.

“Two states are “similar” if they are reached from the start state by the same string of symbols from the alphabet

<< | ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 130 oF 778

The Subset Construction: s-closure

Non-determinism .

e-closure. The e-closure of each NFA state is a set of NFA states with
“similar” behaviour, since they make their transitions on the same input
symbols though with different numbers of ¢s.

Subsets of NFA states.

Acceptance.

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 131 oF 778

|

The Subset Construction: Subsets of NFA states

Non-determinism .

e-closure .

Subsets of NFA states. Each state of the DFA refers to a subset of states
of the NFA which exhibit “similar” behaviour. Similarity of behaviour refers
to the fact that they accept the same input symbols. The behaviour of two
different NFA states may not be “identical” because they may have different

numbers of € transitions for the same input symbol.

Acceptance

> PL April 17, 2023

The Subset Construction: Acceptance

Non-determinism .

e-closure .
Subsets of NFA states.

Acceptance . Since the notion of acceptance of a string by an automaton,
implies finding an accepting sequence even though there may be other non-
accepting sequences, the non-accepting sequences may be ignored and those
non-accepting states may be clustered with the accepting states of the NFA.
So two different states reachable by the same sequence of symbols may be
also thought to be similar.

<<«

PL April 17, 2023

p

Algorithm 3.3
NFATODFA (N) £

Requires: NFA N = (Qn,AU{e}, sy, Fy, —nN)
Yields: DFA D = <QD; A, SD, FD, 5D> with [.(N) = E(D)
Sp = €—CLOSURE({SN}); QD = {SD}; Fp = @; 5D = @;
U :={sp} Note: U is the set of unvisited states of D
while U # ()

(Choose any qp € U; U :=U — {qp}; Note: qp C Qn
for each a € A

(a
Qb = S—CLOSURE((]]) —>\), 5D(QD7 CL) = qb
if qp N Fyv # 0

d
° 4 then Fp := Fp U {¢,}:
O ..,
if qp € Qp

R /.
then {QD = Qb U,{QD},

\ \ U:=UU{qp}

\
<<« | ’ < | ’ > | ’ 44 Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 134 oF 778

PL April 17, 2023

|

Example-NFA
Consider the NFA constructed for the regular expression (a|b)*abb.

N
(alb)*abb

Determinising

N(a|b)*abb D(a|b)*abb
ECy = e-CLOSURE(0) = {0,1,2,3,7}

2 —sy4and 73y 8. So ECy —p e-CLOSURE(4,8) = FECyg. Similarly

EC, B e-CLOSURE(H) = EC5

ECyg = ¢-CLOSURE(4,8) = {4,6,7,1,2,3,8}

EC5 = e-CLOSURE(S) = {5,6,7,1,2,3}

ECs5 —p e-CLOSURE(4,8) = EC, 5 and ECs L e-CLOSURE(H)

ECys —p e-CLOSURE(4,8) = EC, 5 and ECy 5 —+p e-CLOSURE(5,9) = ECs g
EC59 = ¢e-CLOSURE(5,9) = {5,6,7,1,2,3,9}

EC5 2+ e-CLOSURE(4, 8) = ECyg and ECj g L, e-CLOSURE(5, 10) = ECj 19
EC5410 = e-CLOSURE(S, 10) = {5,6,7,1,2,3,10}

ECs510 —p e-CLOSURE(4, 8) and EC519 — e-CLOSURE(5)

<< | ’ | | ’ > | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 136 oF 778 | ’

Final DFA

D(a]b)*abb Input Symbol
State a b
EC)y ECyg ECs
N ECyg ECyg EChyg
ECs ECyg ECs
ECs g ECyg| EC5 10
EC5’1Q EC478 ECK

|

| PL April 17, 2023 ’

Go BAck | ’

Recognition using DFA

The following algorithm may be used to recognize a string using a DFA. Com-
pare it with the algorithm for recognition using an NFA.

Algorithm 3.4
AccepT (D,) 2

 Requires: DFA D = (Q, A, qp, F,6), a lexeme z € A*
Ensures: Boolean
S = qp; a := nextchar(z);
while a # end of _string
S :=4(5,a);
do {a = nextchar(x)
_return (S € F)

N\

[
| | h | | > | >> PL April 17, 2023 Go Back | |

Analysis of Recognition using DFA

e The running time of the algorithm is O(]|z|).
e The space required for the automaton is O(|Q]|.|A|).

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

DFAs and Scanners

In theory there is no difference between theory and practice. In practice there is.

A scanner differs from a simple DFA in several ways. Most importantly,

e A scanner is a DFA with outputs. |t needs to output a token or spit out an
error message and then proceed to the next lexeme.

e |t is usually not much use minimising the number of states of a scanner,
since it needs to classify based on the final state it reaches.

e In practice, the act of rejecting with an error message also requires accepting
the whole lexeme. A scanner actually accepts the entire language (A —

whitespaces)™ .

“In the case of Python it needs to accept even whitespaces, count them and classify them as belonging to some nesting level.

|

<< | ’ | | ’ | 2 | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 140 oF 778
PL April 17, 2023 !

| |

Scanning With output

comment

The Big Picture

< | ‘ > | ‘ > > . Go BACK | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 141 oF 778 |
| ‘ PL April 17, 2023

DFA vis-a-vis Scanner: Practice

e A DFA simply accepts or rejects a lexeme. A scanner needs to recognize
and classify every token and lexeme.

e A DFA may simply reach a non-accepting state in case of an unrecognizable
lexeme. A scanner on the other hand needs to accept the lexeme and raise
an error and proceed to the next lexeme.

e Where a token is allowed as a prefix of another (see the case of “if"") scanners
choose the longest lexeme” that is an identifiable token.

e DFAs are often “minimised” to collapse all accepting states into one accept-
ing state. This is not desirable in the case of a scanner since tokens need to

be classified separately based on the accepting states.
“Not true of FORTRAN

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 142 oF 778
| ’ | ’ | ’ PL April 17, 2023 :

Exercise 3.4

1. Write a reqular expression to specify all numbers in binary form that are multiples of of 4.

2. Write reqular expressions to specify all numbers in binary form that are not multiples of 4.

3. Each comment in the C language

e begins with the characters “//7 and ends with the newline character, or

e begins with the characters “/*” and ends with “*/” and may run across several lines.

(a) Write a reqular expression to recognize comments in the C' language.
(b) Transform the regular expression into a NFA.
(c) Transform the NFA into a DFA.

(d) Explain why most programming languages do not allow nested comments.

(e) modified C comments. If the character sequences “//”, “/*” and “*/” are allowed to appear
in ‘quoted’ form as “//° 7, “/x>7 and “*/’7 respectively within a C comment, then give
. a modified reqular expression for C' comments
1. a NFA for these modified C comments

<< | ’ | | ’ | | ’ > > | Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 143 oF 778

PL April 17, 2023

11. a corresponding DFA for modified C comments

4. Many systems such as Windows XP and Linux recognize commands, filenames and folder names by
the their shortest unique prefix. Hence given the 3 commands chmod, chgrp and chown, their
shortest unique prefives are respectively chm, chg and cho. A wuser can type the shortest unique
prefix of the command and the system will automatically complete it for him/her.

(a) Draw a DFA which recognizes all prefizes that are at least as long as the shortest unique prefiz of
each of the above commands.

(b) Suppose the set of commands also includes two more commands cmp and cmpdir, state how
you will include such commands also in your DFA where one command is a prefix of another.

|

<< | ’ | | ’ > | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 144 or 778 | ’

PL April 17, 2023

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

145 oF 778

Parsing Or Syntax Analysis

|

4. Parsing or Syntax Analysis
4.1. Grammars
< | < | | > ||

Go B | |
>> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

146 oF 778

Generating a Language

Consider the DFA constructed earlier to accept the language defined by the
regular expression (a|b)*abb. We rename the states for convenience.

D(a\b)*abb Input
State

T Q T |
SN NSNS NSNS
O Qo

We begin by rewriting each of the transitions as follows.

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Production rules

S — aA | bB
A — aA | bC
B — aA | bB
C — aA | bD
D — aA|bB | ¢

and think of each of the symbols S, A, B, C, D as generating symbols and thus
producing (rather than consuming strings). For example, the strings abb and
aabbabb are generated by the above production rules as follows.

S = aA = abC = abbD = abb

S = aA = aaA = aabC = aabbD
= aabba A = aabbabC = aabbabbD = aabbabb

|

Go B | ’
| ’ - | ’ < | ’ >> | PL April 17, 2023 ’ 0 AR

Formal languages: Definition, Recognition, Generation

There are three different processes used in dealing with a formal language.

Definition : Regular expressions is a formal (functional programming) lan-
guage used to define or specify a formal language of tokens.

Recognition: Automata are the standard mechanism used to recognize
words/phrases of a formal language. An automaton is used to determine
whether a given word /phrase is a member of the formal language defined in
some other way.

Generation: Grammars are used to define the generation of the word-
s/phrases of a formal language.

|

<< | ’ < | ’ > | ’ > X Go BAck | ’ FULL SCREEN | ’ CLOSE | ’ 149 oF 778
PL April 17, 2023 !

Non-regular language
Consider the following two languages over an alphabet A = {a, b}.
R = {a"b"|n < 100}
P = {a"b"|n > 0}
e [? may be finitely represented by a regular expression (even though the actual
expression is very long).

e However, P’ cannot actually be represented by a regular expression

e A regular expression is not powerful enough to represent languages which
require parenthesis matching to arbitrary depths.

e All high level programming languages require an underlying language of ex-
pressions which require parentheses to be nested and matched to arbitrary
depth.

|

| ’ b | ’ > | ’ >> PL April 17, 2023 : | ’

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

151 oF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

152 oF 778

4.2. Context-Free Grammars

Grammars
Definition 4.1 A grammar G = (N, T, P, S) consists of
e a set N of nonterminal symbols, or variables,
e a start symbol S € N,
e a set 1" of terminal symbols or the alphabet,

e a set P of productions or rewrite rules where each rule is of the form
a— B fora,fe(NUT)

Definition 4.2 Given a grammar G = (N, T, P,S), any a € (NUT)* is
called a sentential form. Any x € T™ is called a sentence".

Note. Every sentence is also a sentential form.

“some authors call it a word. However we will reserve the term word to denote the tokens of a programming language.

|

<< | > > > | . ’ Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 153 OoF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

Grammars: Notation

e Upper case roman letters (A, B, ..., X, Y, etc.) denote nonterminals.

e Final upper case roman letters (X,Y, Z etc.) may also be used as meta-
variables which denote arbitrary non-terminal symbols of a grammar.

e Initial lower case roman letters (a, b, c etc.) will be used to denote terminal
symbols.

o Lower case greek letters («, J etc.) denote sentential forms (or even sen-
tences).

e Final lower case letters (u,v,...,x,y, 2 etc.) denote only sentences.

e In each case the symbols could also be decorated with sub-scripts or super-
scripts.

|

<«

PL April 17, 2023

Context-Free Grammars: Definition

Definition 4.3 A grammar G = (N,T, P, S) is called context-free if
each production is of the form X — «, where

e X € N is a nonterminal and
e € (NUT)* is a sentential form.

e [he production is terminal if o is a sentence

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 155 OF 778
PL April 17, 2023 oo

CFG: Example 1

= ({S},{a,b}, P,S), where S — ab and S — aSb are the only

productions in P.
Derivations look like this:

[)
S = ab
o
S = aSb = aabb
[)
S = aSb = aaSbb = aaabbb
o

S = aSb = aaSbb = aaaSbbb

The first three derivations are complete while the last one is partial

|

| ’ | | ’ > | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CCCCC

Derivations

Definition 4.4 A (partial) derivation (of lengthn € N) in a context-free
grammar is a finite sequence of the form

Q) =] = @9 = -+ Qp (3)

where each a;; € (NUT)* (0 < i <n)is asentential form where oy = S
and «; 1 is obtained by applying a production rule to a non-terminal symbol
ina; for) <1 <n.

Notation. S =™ a denotes that there exists a derivation of o from S.

Definition 4.5 The derivation (3) is complete if o, € T* ie. ayn is a
sentence. Then «y, is said to be a sentence generated by the grammar.

|

| ’ < | ’ | 4 | ’ > > . 0 BACK | ’
PL April 17, 2023

Language Generation

Definition 4.6 The language generated by a grammar GG is the set of sen-
tences that can be generated by G and is denoted L(G).

Example 4.7 L((G), the language generated by the grammar G s
{a"b"™|n > 0}. Prove using induction on the length of derivations.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Regular Grammars
Definition 4.8 A production rule of a context-free grammar is
Right Linear: if it is of the form X — a or X — aY
Left Linear: if it is of the form X — a or X — Ya
wherea € T and X, Y € N.

Definition 4.9 A regular grammar is a context-free grammar whose produc-
tions are either only right linear or only left linear.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

DFA to Regular Grammar

D(a\b)*abb Input RLG

P alyrabt State a| b |Rules
S A B|S — dA|bB
A A C|A— adAlbC
B A B B — aA|bB
C Al E|C — aAlbE|b
E AC|E — aA|bC

Consider the DFA with the states renamed as shown above. We could eas-

ily convert the DFA to a right linear grammar which generates the language

accepted by the DFA.

Go B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

CFG: Empty word
G = ({5} {a,b}, P,S), where S — S5 | aSb | ¢

generates all sequences of matching nested parentheses, including the empty
word €.

A leftmost derivation might look like this:

S=55=555=55= aSbS = abS = abaSh. ..
A rightmost derivation might look like this:

S=55=555=55= Sa5b= Sab= aSbab. ..

Other derivations might look like God alone knows what!

S=55=555=55=...

:| <E s tll : IE E fl l:” E 1? E 3 I lEtI S“ Ig' > | PL April 17, 2023 ’ Go BAck | ’ FULL SCREEN | ’ CLOSE | ’

CFG: Derivation trees 1

Derivation sequences
e put an artificial order in which productions are fired.

e instead look at trees of derivations in which we may think of productions
as being fired in parallel.

e There is then no highlighting in red to determine which copy of a nonterminal
was used to get the next member of the sequence.

e Of course, generation of the empty word £ must be shown explicitly in the
tree.

|

<< | > | ’ > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 162 oF 778
| ’ | ’ PL April 17, 2023 . !

CFG: Derivation trees 2

Derivation tree of

abaabb

|

<<

>>

PL April 17, 2023

Go BAck | ‘

FuLL SCREEN

CLOSE

163 oF 778

CFG: Derivation trees 3

Another

Derivation tree of

abaabb

|

<<

>>

Go B
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

164 oF 778

CFG: Derivation trees 4

(s) ORI

i 0?0 & @

Yet another ‘ .

Derivation tree of
abaabb

|

<<

Go B
| ‘ >> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

165 oF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

166 oF 778

4.3.

Ambiguity

Ambiguity Disambiguation

|

<<

Go B | ’
>> PL April 17, 2023 0 AR

FuLL SCREEN

| |

CLOSE

| |

167 oF 778

| |

Ambiguity: 1

Gi={FEIC} {y,z,4,%+}, P,{E}) where P; consists of the following

productions.
E—1|C | E+F | ExE
I -y | =z
C — 4

Consider the sentence y + 4 * z.

® ®

| |
L | » >
| ’ | ’ |1 | PL April 17,2023 1

Ambiguity: 2

Gi={FEIC} {y,z,4,%+}, P,{E}) where P; consists of the following

productions.
E—1|C | E+F | ExE
I -y | =z
C — 4

Consider the sentence y + 4 * z.

e e o e

|

| |
L | » >
| ’ | ’ |1 | PL April 17,2023 1

Ambiguity: 3

Gi={FEIC} {y,z,4,%+}, P,{E}) where P; consists of the following

productions.
E—1|C | E+F | ExE
I -y | =z
C — 4

Consider the sentence y + 4 * z.

7

i P

| | .]
| ’ b | ’ > [> | PL April 17,2023

Ambiguity: 4

Gi={FEIC} {y,z,4,%+}, P,{E}) where P; consists of the following

productions.
E—1|C | E+F | ExE
I -y | =z
C — 4

Consider the sentence y + 4 * z.

Tes e

e
o \?ggéo

©
o _

| | .]
| ’ b | ’ > [> | PL April 17,2023

Ambiguity: 5

Gi={FEIC} {y,z,4,%+}, P,{E}) where P; consists of the following

productions.
E—1|C | E+F | ExE
I -y | =z
C — 4

Consider the sentence y + 4 * z.

= o
o BT

0

OO ©
@ © _

| | o< |
| ‘ b | ’ > |1 dd | PL April 17,2023 1

| eft-most Derivation 1

Left-most derivation of y+4%*z corresponding to the first derivation tree.

b

E+E
I+FE
y+E&
y+ExE
y+C*E
y+4x L
y+4x]
y+4xz

R 2 2 R

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

| eft-most Derivation 2

Left-most derivation of y+4%*z corresponding to the second derivation tree.

b

ExE
F+ExE
I+ExE
y+ExE
y+C*E
y + 4x L
y + 4x1
y+4xz

R 2 2 R

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Right-most Derivation 1
Right-most derivation of y+4%*z corresponding to the first derivation tree.

E

E+E
E+ExE
E+ExI
E+FExz
E+Cxz
E+4 x 7
I1+4 x 7
y+4xz

R 2 2 R

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Right-most Derivation 2

Right-most derivation of y+4%*z corresponding to the second derivation tree.

E =
ExE =
Exl =
Exz =
E+FExz =
E+Cxz =
EF+4xz =
I+4xz7z =

y+4xz

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Characterizing Ambiguity

The following statements are equivalent.
e A CFG is ambiguous if some sentence it generates has more than one deriva-
tion tree
e A CFG is ambiguous if there is a some sentence it generates with more than
one left-most derivation

o A CFG is ambiguous if there is a some sentence it generates with more than

one right-most derivation

|

|
> | ’ - | ’ < | ’ >> PL April 17, 2023 ACK | ’

Ambiguity in CFLs
see Wikipedia

e Some ambiguities result from incorrect grammars, i.e. there may exist a
grammar which generates the same language with unique derivation trees.

e There may be some languages which are inherently ambiguous i.e. there is
no context-free grammar for the language with only unique derivation trees
for every sentence of the language.

e Whether a given CFG is ambiguous is undecidable i.e. there is no algorithm
which can decide whether a given context-free grammar is ambiguous.

e Whether a given context-free language is inherently ambiguous is also unde-
cidable since there is no algorithm which can decide whether any CFG that
generates the language is ambiguous.

|

<< | > > > | . ’ Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 178 oF 778
| ’ | ’ | ’ PL April 17, 2023 !

https://en.wikipedia.org/wiki/Ambiguous_grammar

Removing ambiguity

There are essentially three ways adopted by programming language designers
or compiler designers to remove ambiguity

e Change the language generated by introducing new bracketing tokens, (e.g.
new reserved keywords begin...end).

e Introduce new precedence or associativity rules to disambiguate — this will
invalidate certain derivation trees and may guarantee uniqueness, (e.g. the
dangling-else problem see section 4.4).

e Change the grammar of the language (without changing the language gen-
erated)

|

<< | > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 179 OF 778
| ’ | ’ PL April 17, 2023 77

Disambiguation

The only way to remove ambiguity (without changing the language generated
for a language which is not ambiguous) is to change the grammar by introducing
some more non-terminal symbols and changing the production rules”. Consider
the grammar G = (N' {y.,z,4,%,+}, P . {E}) where N = N U {T, F'}
with the following production rules P’.

E — E+T|T
T — T«F | F
F—1|C

I - y|z

C — 4

and compare it with the grammar G

“However the introduction of fresh non-terminals and rules may introduce new ambiguities, if th edesigner is not careful!

|

Go BAck FuLL SCREEN | ’ CLOSE | ’ 180 or 778

« | ’ b | ’ > | ’ >> | PL April 17, 2023 | ’

| eft-most Derivation 1’

The left-most derivation of y+4%*z is then as follows.

)
E+T
I+T
y+1
y+1*F
y+1'xF
y+Fx
y+C'xF
y+4xF
y+4x[
y+4x%xz

L I 2 R A

|

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 181 oF 778 | ’

| PL April 17, 2023 ’

Left-most Derivations
Compare it with the Left-most Derivation 1.

Gi. F = E+E = I+F = y+FE = y+ExE =
y+OxE = y+4xE = y+4+x] =y + 4 x z

G. E= E+T = I+T = y+T = y+TxF = y+T*F = y+F*F =
y+COxF = y+4xF = y+4+x] =y +4 xz

There is no derivation in G’1 corresponding to Left-most Derivation 2 (Why
not?).

|

- | | | | - B | |
| ’ > >> PL April 17, 2023 0 Aok

Right-most derivation of y+4*z corresponding to the first derivation tree.

Right-most Derivation 1’

E
E+T
E+TxF
E+Tx1
E+Txz
E+Cxz
E+4 %7
F+4 x 7
I1+4 x 7
+4 % 7
y+4x%xz

R O I 2 R A

Compare it with the Right-most Derivation 1.

O <Jher

e-is o de

rivation gorresponding to Rightzmost

Disambiguation by Parenthesization

Another method of disambiguating a language is to change the language gen-
erated, by introducing suitable bracketing mechanisms.

Example 4.10 Compare the following fully parenthesized grammar G+ (which

has the extra terminal symbols (and)) with the grammar (G| without paren-
theses

E—1|C/| (E+F) | (ExFE)
I -y | =z
C — 4

Though unambiguous, the language defined by this grammar is different from
that of the original grammar without parentheses.

|

Go B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

Associativity and Precedence

The grammar Gll implements
Precedence. x has higher precedence than +.
Associativity. x and + are both left associative operators.

but is parentheses-free, whereas grammar (=5 generates a different language
which is unambiguous. We may combine the two with the benefits of both.

|

<< | ’ | | ’ > | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 185 OF 778

PL April 17, 2023

Parenthesization, Associativity and Precedence

Example 4.11 Compare the following parenthesized grammar G’2 which com-
bines the benefits of both G/l and (Go (parenthesization wherever required
by implementing the bodmas rule). G, = (N' {y,z,4,*,+,(,)}, P5,{E})
where N' = N U{T, F'} with the following production rules P,.

E — E+T|T
T — T«F | F
F—1|C]|(F)
I - y|z
C — 4

B | ’
| ’ D | ’ i | ’ > PL April 17, 2023 °

4.4. The “dangling else” problem
e Some programming languages like FORTRAN and Assembly (conditional jumps) have a single if. .. then construct. We
write it(b, C') to denote if b then C.

e Some programming languages like ML, OCAML have a single if...then...else construct and we write ite(b, C,C") to
denote if b then C else C'.

e Many programming languages have both if...then and if...then...else constructs which potentially may lead to a
dangling-else problem.
The dangling-else problem potentially is an ambiguity associated with a compound construct such as

if b; then if b, then C] else () (4)

where by and by are boolean expressions and C; and C5 are appropriate constructs (expressions or commands) that are
allowed by the language.

The ambiguity arises because the construct (4) may be interpreted as denoting either it(by, ite(bs, C1, Co)) or ite(by, it(ba, Cy), Cs).

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 187 OF 778

|

Co

| m= esem e

Figure 1: it(by,ite(bqe, C1, Cs))
Disambiguation

1. Disambiguation may be achieved in the language by introducing new bracketing symbols (e.g. begin...end) for all
constructs of the kind that C' belongs to. If the use of these brackets is made mandatory in the language then the
construct (4) itself would be syntactically illegal and would have to be replaced by one of the following depending upon
the programmer’s intention.

<<« | ‘ < | ‘ > | ‘ »>> i Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 188 OF 778 |
PL April 17, 2023

e If the programmer’s intention corresponds to it(by,ite(by, C1, Cy)) (see the parse tree in figure 1) then

if b; then
begin
if by, then
begin
C1
end
else
begin
Co
end
end

e If programmer intended ite(by, it(bo, C1), Cy) (see the parse tree in figure 2).

if b; then
begin
if by then
begin
C1
end
end

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 189 oF 778 |
| ’ | ’ | ’ PL April 17, 2023 !

else
begin

end

- -

2. While the use of begin...end is general-purpose enough for all constructs of the kind that C' is, it tends to introduce
too many tokens in an actual program. Some languages (e.g. Bash) instead introduce a unique closing token for

Figure 2: ite(by,it(be, Cy),Cs)

<<

< | ‘ > | ‘ »>> | i ‘ Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 190 oF 778
| ‘ PL April 17, 2023

| [

each construct. That is, the constructs come with pairs of unique opening and closing tokens (e.g. if...then...fi,
if. .. then...else...fi, case...esac etc.) In such a language the constructs corresponding to it(by, ite(by, C1, Cs)) would
then be written as follows (see also the parse tree in figure 3).

if b; then
if by then
Ch

else

<< |‘ <

»>

Co

PL April 17, 2023

Figure 3: it(by,ite(be, C1, Cs))

Go BAck

FuLL SCREEN

CLOSE

191 oF 778

| [

while ite(by,it(be, C1), Co) would be written as (see also the parse tree in figure 4)

AN

Figure 4: it(by,ite(bs, C1,Cs))

if b; then
if b, then

In general this solution leads to a larger number of reserved words in the language but a smaller number of tokens
(produced after scanning) per syntactically valid program as opposed to the previous solution. Languages like C and

<<

| | ‘ | | ‘ > > | . ‘ Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 192 oF 778 |
| ‘ PL April 17, 2023

Perl also dispense with the reserved word then by insisting that all conditions in such statements be enclosed in
parentheses.

. Languages like Pascal which use a single bracketing mechanism for command constructs, often try to reduce the number

of tokens produced per program by relaxing the mandatory requirement of bracketing, by stipulating that bracketing is
required only for compound commands. Thus for atomic commands ¢; and ¢y the ambiguity in

if b; then if b, then c; else ¢ (5)

is resolved by introducing an associativety rule that each else is associated with the nearest enclosing condition. That
is the construct (5) is interpreted as referring to it(by, ite(by, Cy, C3)).

. There are other means of achieving disambiguation of which the most ingenious is the use of white-space indentation in

Python to keep it unambiguous. Hence in Python it(by, ite(be, C, Cs)) would be written as

if by:
if by:
Ch
else:

Cy

and ite(by, it(by, C1), Co) would be written as

if by:

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 193 oF 778 |

if bo:
Cy
else:

Cy

P | |

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

194 oF 778

| [

Exercise 4.1

1. Two context-free grammars are considered equivalent if they generate the same language. Prove that

G and G| are equivalent.

2. Palindromes. A palindrome s a string that is equal to its reverse i.e. it is the same when read
backwards (e.g. aabbaa and abaabaaba are both palindromes). Design a grammar for generating all

palindromes over the terminal symbols a and b.

3. Matching brackets.

(a) Design a context-free grammar to generate sequences of matching brackets when the set of termi-

nals consists of three pairs of brackets {(,),[,],{, } }-
(b) If your grammar is ambiguous give two rightmost derivations of the same string and draw the
two derivation trees. Explain how you will modify the grammar to make it unambiguous.

(c¢) If your grammar is not ambiguous prove that it is not ambiguous.

4. Design an unambiguous grammar for the expression language on integers consisting of expressions
made up of operators +, —, *, /, % and the bracketing symbols (and), assuming the usual rules of

precedence among operators that you have learned in school.

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 195 oF 778 | [

« | ’ b | ’ > | ’ >> | PL April 17, 2023 ’

5. Modify the above grammar to include the exponentiation operator = which has a higher precedence
than the other operators and is right-associative.

6. How will you modify the grammar above to include the unary minus operator — where the unary
minus has a higher precedence than other operators?

7. The language specified by a reqular expression can also be generated by a context-free grammar.

(a) Design a context-free grammar to generate all floating-point numbers allowed by the C' language.

(b) Design a context-free grammar to generate all numbers in binary form that are not multiples of
4.

(c) Write a regular expression to specify all numbers in binary form that are multiples of of 3.

8. Prove that the G, is indeed unambiguous.
9. Prove that the grammar of fully parenthesized expressions 18 unambiguous.

10. Ezplain how the grammar G’ implements left associativity and precedence.

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 196 oF 778 |

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

197 oF 778

| [

4.5.

Specification of Syntax: Extended Backus-Naur Form

Specification of Syntax: EBNF

<<

< | | > | | = | o N
| ‘ PL April 17, 2023 0 PAR

FuLL SCREEN

CLOSE

198 oF 778

| [

The EBNF specification of a programming language is a collection of rules that defines the (context-free) grammar of the
language. It specifies the formation rules for the correct grammatical construction of the phrases of the language. In order
to reduce the number of rules unambiguously regular expression operators such as alternation, Kleene closure and +-closure
are also used. (Con)catenation is represented by juxtaposition. In addition, a period is used to terminate a rule. The rules
are written usually in a “top-down fashion”.

Start symbol. The very first rule gives the productions of the start symbol of the grammar.

Non-terminals. Uses English words or phrases to denote non-terminal symbols. These words or phrases are suggestive of
the nature or meaning of the constructs.

Metasymbols.

e Sequences of constructs enclosed in “{” and “}” denote zero or more occurrences of the construct (c.f. Kleene closure
on regular expressions).

e Sequences of constructs enclosed in “[” and “|” denote that the enclosed constructs are optional i.e. there can be
only zero or one occurrence of the sequence.
e Constructs are enclosed in “(” and “)” to group them together.

((‘77

separates alternatives.

14

e “ =" defines the productions of each non-terminal symbol.

e “ .7 terminates the possibly many rewrite rules for a non-terminal.

<<«

| ’ | | ’ | | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 199 oF 778

|

Terminals. Terminal symbol strings are sometimes enclosed in double-quotes when written in monochrome (we shall addi-
tionally colour-code them).

VEP. THE WORLD DIDWT ToRM
CHLOR UKTHL SOMETIME. 1M
T™ME 1930s,

Sure T DD, 1N FACT,

BUT THEM Wil RIE BT SECERSSMLT,
CAD AUNTINES (M B LOT OF GRERT
ol P IF THE KETVSTS. WERE
TOALD WS BLACK, | THSANE .

HAWVE BEEM SHADES
OF GRAY BACK THER

AT R Sl

Note.

We have chosen to colour-code the EBNF specification in order to clearly separate the colours of the EBNF operators from
those of the language that is being specified. Further we have chosen to use different colours for the Nonterminal symbols
and the ferminal symbols. In the bad old days when the world was only black-and-white and the only font available was
the type-writer font, the <Nonterminal> symbols were usually enclosed in “<>” while the terminal symbols were written
directly (optionally enclosed in double-quotes (")).

<<

| | ‘ | | ‘ > > | . Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 200 oF 778
| ‘ PL April 17, 2023

| [

Balanced Parentheses: CFG

Example 4.12 A context-free grammar for balanced parentheses (including
the empty string) over the terminal alphabet {(,), |, ,{, } } could be given as

BPy={S} A,), 1,1, '}, P,{S}), where P consists of the productions

S — e,

S — (5)9,
S — |55,
S — {§5}5

| | « | | . | - - omes | |
PL April 17, 2023

Balanced Parentheses: EBNF
Example 4.13 BP; may be expressed in EBNF as follows:

BracketSeq = {Bracket} .

Bracket = LeftParen BracketSeq RightParen |
LeftSqbracket BracketSeq RightSqbracket |
LeftBrace BracketSeq RightBrace .

LeftParen = N7

RightParen = 7

LeftSqbracket = " .

RightSqbracket = =7 .

LeftBrace = 7.

RightBrace = 17

S0 Bea | ’
| ’ - | ’ < | ’ > PL April 17, 2023 0 PATK

in EBNF
EBNF has its own grammar which is again context-free. Hence EBNF (4.5)

may be used to define in its own syntax as follows:
Syntax = {Production} .
Production = NonTerminal =" Possible Rewrites *.”
Possible Rewrites = Rewrite {“|” Rewrite} .
Rewrite == Symbol {Symbol} .
Symbol == NonTerminal | Terminal | GroupRewrites .
GroupRewrites = “{”7 Possible Rewrites “}” |
" Possible Rewrites “|” |
“(7 Possible Rewrites)"
NonTerminal = Letter {Letter | Digit} .
Terminal = Character {Character} .

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

EBNF: Character Set

The character set used in EBNF is described below.

C haracter
Letter
UpperCase

LowerCase

Daigit
SpecialC har

K XSy TNy i “wnn “w» ISV Gin» G »” 77
LSt e A e s G
>

Letter | Digit | SpecialChar

UpperCase | LowerCase

CﬁA?? | ﬁCB?? ‘ ﬁCO?? ‘ CCD77 ‘ CﬁE?? ‘ ﬁCF?? | (CG?? | (CH?? |

CC[77 C(J?? ’ CCK?? ‘ CCL?? ‘ ﬁCM?? ‘ C(N?) ’ CCO?? ‘ ﬁCP?? ’ CCQ)? ’
((R?? ‘ ((S?? | CCT?? | C(U?? ’ CCV?? ‘ C(W?? | (CX?? ‘ ((Y?? ‘ CCZ??
“C.L” Cﬁb” ’ " ‘ ﬁﬁd” ‘ M ‘ Cﬂfﬂ ‘ " ‘ Cﬁh?? ’

“Z” ‘ Y] ’ CCk?? ‘ (Cl?? ‘ ‘ ﬁ(n” ’ 6(077 ‘ Cﬁp” ‘ Cﬁq” ‘

44 77’ |66t77‘“ 77’“ 77’((77’“ 7 « 77’((7

T v w T Y 2
C(O?? ’ 66177 ‘ (£277 ’ 66377 ‘ 6(477 ’ (C[’?? ‘ C6677 ‘ ((777 ‘ CC877 ‘ ((977
W N Cﬁ 7 ARYY) «o/» 44 7 «/» W/ M .. ”
S0 T T A G S
44 7 W ((_77 W » W /» . ” . ” 44) 44 7 44 7 CC??T
S I et E A T B B B B

W~

Go BAck | ‘ LLLLLLLLLL | ‘ CLOSE | ‘ 204 OF 778 |

| ‘ > | PL April 17, 2023 ‘

in ASCII-EBNF

<Syntax> ::= {<Production>}.

<Production> ::= <NonTerminal> "::=" <PossibleRewrites>".".
<PossibleRewrites> ::= <Rewrite> {"|" <Rewrite>}.

<Rewrite> ::= <Symbol> {<Symbol>}.

<Symbol> ::= <NonTerminal> | <Terminal> | <GroupRewrites>.
<GroupRewrites> ::= "{"<PossibleRewrites>"}" |

"["<PossibleRewrites>"]" |

"("<PossibleRewrites>")".
<NonTerminal> ::= <Letter>{<Letter> | <Digit>}.
<Terminal> ::= <Character>{<Character>}.

We leave it to the interested reader to define the nonterminals <Digit>,
<Letter> and <Character>. Many languages even now are specified in
some slight variant of the above notation.

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 205 OF 778 |

b | ’ b | ’ > | ’ > l PL April 17, 2023 ’

4.6. The WHILE Programming Language: Syntax

All words written in bold font are reserved words and cannot be used as identifiers in any program.

Program = “program” Identifier “:” Block .
Block = DeclarationSeq CommandSeq .
DeclarationSeq = {Declaration} .
Declaration = ‘“var” VariableList*“:” Type“:”
Type = “int” | “bool” .
VariableList = Variable{“” Variable} .
CommandSeq == “{"{Command“”}“}” .
Command = Variable“: =" Expression |
“read” Variable |
“write” IntExpression |
“if” BoolEzxpression “then” CommandSeq
“else” CommandSeq
“endif” |
“while” BoolExpression “do” CommandSeq
“endwh” .
| | < | | > | | > Go Back Fuu Soreey | |

PL April 17, 2023 | ‘

CLOSE

206 OF 778

| [

Expression

IntExpression | Bool Expression .

IntExpression = IntEzpression AddOp IntTerm | IntTerm .
IntTerm = IntTerm MultOp IntFactor | IntFactor .
IntFactor = Numeral | Variable |
“("IntEzpression“)” | “ " IntFactor .
Bool Expression = BoolExpression “||” BoolTerm | BoolTerm .
BoolTerm = BoolTerm “L&7 BoolFactor | Bool Factor .
Bool Factor = “tt7 | “ff” | Variable | Comparison |
“(” Bool Expression)” | “I” Bool Factor .
Comparison = IntExpression RelOp IntExpression .
Variable = Identifier .
RelOp = ST T ST] R
AddOp = “47 |«
MultOp e A
Identifier = Letter{ Letter | Digit} .
Numeral = [“+7 | “|Digit{Digit} .
Note
1. “” acts as a terminator for both Declarations and Commands.
2. “7 acts as a separator in VariableList
< | | < | | > | | o Back FuLL ScREEN

PL April 17, 2023 | ’

| |

CLOSE

| |

207 OF 778

|

3. Comparison has a higher precedence than BoolTerm and Bool Expression.
4. RelOps have lower precedence than any of the integer operations specified in MultOp and AddOp.

5. The nonterminals Letter and Digit are as specified earlier in the EBNF character set

<<«

Go B | | rPous | |
| ’ < | ’ > | ’ »>> PL April 17, 2023 0 BAck ULL SCREEN

CLOSE

| |

208 OF 778

|

Syntax Diagrams

e EBNF was first used to define the grammar of ALGOL-60 and the syntax
was used to design the parser for the language.

e EBNF also has a diagrammatic rendering called syntax diagrams or railroad
diagrams. The grammar of SML has been rendered by a set of syntax
diagrams.

e Pascal has been defined using both the text-version of EBNF and through
syntax diagrams.

e While the text form of EBNF helps in parsing, the diagrammatic rendering
is only for the purpose of readability.

e EBNF is a specification language that almost all modern programming lan-
guages use to define the grammar of the programming language

| ’ b | ’ > | ’ >> | PL April 17, 2023 ’

http://darcy.rsgc.on.ca/ACES/ICS4U/Calculus/SyntaxDiagrams.pdf
http://darcy.rsgc.on.ca/ACES/ICS4U/Calculus/SyntaxDiagrams.pdf
https://www.cse.buffalo.edu//~regan/cse305/MLBNF.pdf
http://www.fit.vutbr.cz/study/courses/APR/public/ebnf.html
http://primepuzzle.com/tp2/syntax-diagrams.html

e BNF of C

e BNF of Java

e EBNF of Pascal

e Pascal Syntax diagrams
e BNF of Standard ML

e BNF of Datalog

e BNF of Prolog

Syntax Specifications

PL April 17, 2023

GGGGGG

LLLLLLLLLL

CCCCC

https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm
https://users-cs.au.dk/amoeller/RegAut/JavaBNF.html
http://www.fit.vutbr.cz/study/courses/APR/public/ebnf.html
http://primepuzzle.com/tp2/syntax-diagrams.html
https://www.cse.buffalo.edu//~regan/cse305/MLBNF.pdf
https://docs.racket-lang.org/datalog/datalog.html
https://github.com/simonkrenger/ch.bfh.bti7064.w2013.PrologParser/blob/master/doc/prolog-bnf-grammar.txt

Syntax of Standard ML

Tobias Nipkow and Larry Paulson

PROGRAMS AND MODULES

Program

TopLevelDeclaration

TopLevelDeclaration

ObjectDeclaration

] €

SignatureDeclaration
FunctorDeclaration

ObjectDeclaration

LCstruct:uree Tdent,

and

N

ObjectDeclaration @ ObjectDeclaration @@7

<<

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

211 oF

-1

-1

[oe}

StgnatureDeclaration

signature Ident @ Signature
and
3

FunctorDeclaration

functor FunctorBinding

FunctorBinding

—{ Ident }—@—| FunctorArguments a ‘I' a

FunctorArguments

Ident |—@—| Signature

Specification

Structure

struct)—| ObjectDeclaration end

CompoundIdent

|’ >>

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

212 oF

Specification

O

and

TypeVarList H Ident }—ﬁ
and

DatatypeBinding |

\—Cdatatype

\—Cexception

L<s1:ru::’cureDT—{ Ident, }—@—{ Signature }—h
and

2

~— sharing)

Specification @ Specification
CompoundIdent J

CompoundIdent

~— include ldent

| | ’ > | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 213 OF

=~
=1
[oe}

- (\
and
FunHeading

(1)

o/

N (and)

andJ
@e)—{ TypeBinding =~
%datatype)—{ DatatypeBinding I A

1—<withtype>{ TypeBinding }»j
%abstype)—{ DatatypeBinding I
1—Glithtype TypeBinding }—f
exceptlon Name Type ™
CompoundName %{
and
L<1o<:al)—1 Declaration end =
L@n T—i Compoundldent] A
[Mdent |
Ident
infixr Digit :—:
<< | ’ | ’ L /—DL\ | ’ > > I | PL April 17, 2023 Go Bacy | ’ FuLL SCREEN | ’ CLOSE | ’ 214 oF 778

—r eI T

(

[—{ AtomicPattern }—]
|

AtomicPattern H InfixOperator H AtomicPattern |

TypeBinding

T—{ TypeVarList H Ident e
and

DatatypeBinding

TypeVarList H Ident

Type VarList

<<

| ’ >> PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

\—{ Expression }—@—{ Type I A

\—{ Expression andalso Expression ~
\—{ Expression }—(handle Match I ~
\—<raise Expression I =

G Expresion |
I J

L@n)—{ Match J

InfizrExpression

AtomicExpression I j

InfixExpression H InfixOperator H InfixExpression

<<

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

216 OoF

-1

-1

[oe}

Expression @

Expression @

Label }—@—{ Expression
)

N

Expression @

l Expression l

MATCHES AND PATTERNS

2Tl —
(1)
0/

Pattern

Match

AtomicPattern

\—{ CompoundName H AtomicPattern

<<

||] T
\—“PE{ttern H IﬁﬁxODeratJtr .M_! Patter®

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

L rattern)

® oF
o

(O [ttt |- (D

FieldPattern

Pattern

0 FieldPattern

<< < > > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 218 OF 778 |
| ’ | ’ | ’ PL April 17, 2023 : E

ype j
© " ®
O

1 Moo fl

Compoundldent |~/

oRET:

v)T

O-{Tw]-6

) J
%

LEXICAL MATTERS: IDENTIFIERS, CONSTANTS, COMMENTS

Compoundldent

[dent |
: Ident :
CompoundName
Compoundldent }T
5

Name

Ident

<<

\—(IE]j }—i InfixQperator }»/ ’ >

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

219 oF 778

| L

any printable character except \ and "

StringEscape

StringFscape
(n)
N\ 4

L@ y

LC)—Cone of ©ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"_)—]

" Digit [Digit [Digit | y

Numeral

TypeVpr —
< > > > . Go BAck FuLL SCREEN CLOSE 220 OF 778
PL April 17, 2023

Label

Alphanumericldent

Digit
—Cone of 0123456789)—

Letter

—Cone of ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klmnopqrstuvwxyai

Comment
—@Tgmy text that does not include (* or *) as a substm‘ng)T@i
Comment

<<

| ’ o | ’ > > Go Back

PL April 17, 2023 ’

| |

FuLL SCREEN

| |

CLOSE

221 OF 778

Exercise 4.2

1. Translate all the context-free grammars that we have so far seen into EBNF specifications.

2. Specify the language of reqular expressions over a non-empty finite alphabet A in EBNF.

3. Giwen a textual EBNF specification write an algorithm to render each non-terminal as a syntax

diagram.

|

<< | ’ | | ’ > | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 222 OF 778

PL April 17, 2023

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

223 OF 778

4.7.

Parsing

Introduction to Parsing

|

<<

Go B
>> PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

224 OF 778

| |

Overview of Parsing

Since

e parsing requires the checking whether a given token stream conforms to the
rules of the grammar and

e since a context-free grammar may generate an infinite number of different
strings

any parsing method should be guided by the given input (token) string, so that
a deterministic strategy may be evolved.

|

<< < > >> . Go BAck | ’ FULL SCREEN | ’ CLOSE | ’ 225 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

Parsing Methods
Two kinds of parsing methods

Top-down parsing Try to generate the given input sentence from the
start symbol of the grammar by applying the production rules.

Bottom-up parsing Try to reduce the given input sentence to the start
symbol by applying the rules in reverse

In general top-down parsing requires long look-aheads in order to do a determin-
istic guess from the given input token stream. On the other hand bottom-up
parsing yields better results and can be automated by software tools.

|

<< | > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 226 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

227 OF 778

| [

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

228 OF 778

| [

4.8. Recursive Descent Parsing

Top-down Parsing

e Try to generate the given input sentence from the start symbol of the
grammar by applying the production rules.

e Not the most general.

e But most modern high-level programming languages are designed to be ef-
ficiently parsed by this method.

e Recursive-descent is the most frequently employed technique when language
C in which the compiler is written, supports recursion.

<<«

PL April 17, 2023

Recursive Descent Parsing
e Suitable for grammars that are LL(1)" parseable.
o A set of (mutually) recursive procedures
¢ Has a single procedure/function for each non-terminal symbol

e Allows for syntax errors to be pinpointed more accurately than most other
parsing methods

¢ Left-to-right Left-most derivations with 1 look-ahead

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 230 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

|

Caveats with RDP: Direct Left Recursion

Any left-recursion in the grammar can lead to infinite recursive calls during
which no input token is consumed and there is no return from the recursion.
That is, they should not be of the form

A — Ao

This would result in an infinite recursion with no input token consumed.

<<«

PL April 17, 2023

Caveats with RDP: Indirect Left Recursion

e A production cannot even be indirectly left recursive. For instance the fol-
lowing is indirect left-recursion of cycle length 2.

Example 4.14
A — Bf

B — A«
where o, 5 € (N UT)*.
e In general it should be impossible to have derivation sequences of the

form A = Ajo1--- = A,_1a,—1 = Aay for nonterminal symbols
A A, ..., A,_1 forany n > 0.

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 232 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

Caveats with RDP: Left Factoring

For RDP to succeed without backtracking, for each input token and each non-
terminal symbol there should be only one rule applicable;

Example 4.15 A set of productions of the form
A — aBp | aCy

where B and C stand for different phrases would lead to non-determinism. The
normal practice then would be to left-factor the two productions by introducing
a new non-terminal symbol A" and rewrite the rule as

A — aqA’
A" —s BB | Cy

provided B and C' generate terminal strings with different first symbols (oth-
erwise more left-factoring needs to be performed).

<<«

| ’ | | ’ | | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 233 OF 778

|

A Simple Left-recursive Grammar

The following grammar is unambiguous and implements both left-associativity
and precedence of operators. G = ({E,T,D},{a,b,—,/(,)}, P, E) whose
productions are

E = E-T|T

T — T/D| D

D —alb|(F)

B | ’
| ’ D | ’ i | ’ > PL April 17, 2023 °

| eft Recursion Removal

The grammar (& is clearly left-recursive in both the nonterminals £/ and 7" and

hence is not amenable to recursive-descent parsing.

The grammar may then have to be modified as follows:

E — TE'
E' — —TE"| ¢
T — DT’
T — /DT’ | ¢

D —al|b]|(F)

Now this grammar is no longer left-recursive and may then be parsed by a

recursive-descent parser.

<<«

PL April 17, 2023

Recursive Descent Parsing: Determinization

RDP can be deterministic only if
e the input token lookahead uniquely determines the production to be applied.

e We need to define the FIRST symbols that will be generated by each pro-
duction.

e In the presence of ¢ productions, symbols that can FOLLOW a given non-
terminal symbol also need to be specified.

<<«

PL April 17, 2023

Nullable

A nonterminal symbol X is nullable if it can derive the empty string, i.e.
X =% e. The following algorithm computes nullable(X) for each non-
terminal symbol. For convenience nullable is set to false for each terminal
symbol in the grammar. NULLABLE(N) is the set of boolean values spec-
ifying for each nonterminal symbol whether it is nullable.

<<«

PL April 17, 2023

Algorithm 4.1
df

NULLABLE (N) =
Require: CFG G = (N, T, P, S)
Yields: NULLABLE(N) = {nullable(X) | X € N}
for each a € T’
do nullable(a) := false ;
for each X ¢ N
3 do nullable(X) :=3X —-ec€ P
repeat
for each X - a;...0p. € P
do {if Vi:1l<i<k:nullable(a;)
then nullable(X) := true
\until NULLABLE(N) is unchanged

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 238 OF 778 |

First

first(a) is the set of terminal symbols that can be the first symbol of any
string that v can derive, i.e. a € first(a) if and only if there exists a derivation
a =" ax for any string of terminals x.

Notice that

e the computation of first requires nullable to be available. Also the first
of any terminal symbol is itself.

e also that if X — aZ [is a production then one cannot ignore the first(Z)
in computing first(X) especially if & =™ . Further if Z is also nullable

then first(B) C first(X).

<< | ’ | | ’ | | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 239 OF 778

PL April 17, 2023

Algorithm 4.2
FIrsT (NUT) i

Require: CFG G = (N, T, P, S)

Yields: FIRST(N UT) = {first(a) | a€ NUT}
for each a € T

do first(a) := {a}
for each X ¢ N
3 do first(X) =0
repeat

for each X - a;...0p. € P

d {if Vi' 0 1 < <i:nullable(ay)
then first(X) = first(X) U first(a;)

| until FIRST(N) is unchanged

<<«

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

240 oF 778

|

First And Follow

follow(X) for any nonterminal symbol X is the set of terminal symbols a
such that there exists a rightmost derivation of the form

*

i.e. follow(X) is the set of all terminal symbols that can occur immediately

to the right of X in a rightmost derivation.

Notice that if there exists a a rightmost derivation of the form
S="Xaj...qra-- ="

such that a7, ..., a; are all nullable then again we have

S="Xoy...qpa-- =" Xa- =

<<«

| ’ | | ’ | | ’ > > | . ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 241 OF 77
PL April 17, 2023

Algorithm 4.3

ForLLow (N) i

for each a € NUT
do follow(a) := 10
repeat

do |

Require: CFG G =
Yields: FOLLOW (N UT) = {follow(a) | « € NUT}

(N, T, P,S)

for each X - a;...ap. € P
X (for 1 :=1 to k
(if Vi' 1 i+ 1 <4 < k:nullable(ay)

then follow(«;) := follow(a;) U follow(X)
do (for j: =1+ 1to k

do
\

{if Vil i i+ 1 <7 < j:nullable(ay)

then follow(w;) := follow(a;) U first(a;)

| until FOLLOW(N UT) is unchanged

<<«

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

242 OF 778

|

Recursive Descent Parsing: Pragmatics

e In any collection of (possibly) mutually recursive procedures, it is necessary
to clearly specify the entry point into the collection and the exits. So we
add a new start symbol S and a new end-of-file token EOF (represented by
a new terminal symbol $) with the unique production S — E$.

e Tokens are in upper case and the correspondence between the lexemes and
tokens is as follows:
ID(a) < a , ID(b) b
LPAREN < (, RPAREN <)
MINUS <« — , DIVIDE <+ /
EOF — $

B | ’
| ’ D | ’ i | ’ > PL April 17, 2023 °

4.9.

A recursive descent parser

program Parse;

var input_token: token;

function get token:token;
begin

(% lex x)
end ;

procedure match(expected);

label 99;

Il

Go BAck

begin
if input_token = expected then
begin
consume (input_token);
if input_token <> EOF then input_token := get_token
else goto 99
end
else parse_error
99:
end ;
< | | < | | > | | >

PL April 17, 2023

FuLL SCREEN

CLOSE

244 OF 778

(¥ The system of mutually recursive procedures begins here x)

procedure Expression; Forward;

procedure Division (x D-—=>a | b | (E) x)
begin
case input_token of
ID: match(ID);
LPAREN: Expression; match (RPAREN);
else parse_error
end ;

procedure Term tail (x T’ —> /DT’ | <epsilon> x)
begin
case input_token of
DIVIDE: Division; Term _tail;
MINUS: Term _tail; (% epsilon production x)
RPAREN, 1D: ; (* skip epsilon production x)
else parse_error
end;

procedure Term (x T —> DT’ x)

begin
case input_token of
ID(a), ID(b), LPAREN: Division; Term_tail;
else parse_error

Il

<<

h | | > | | >> PL April 17, 2023

Go Back

FULL SCREEN

CLOSE

245 OF 778

end ;

procedure Expression _tail (x E? — —TE’ | <epsilon> x)

begin
case input token of
MINUS: Term; Expression_tail;
RPAREN, 1D: ; (% skip epsilon production x)
else parse_error
end;

procedure Expression (% E > TE’ x)

begin
case input_token of
ID(a), ID(b), LPAREN: Term; Expression_tail;
else parse_error

end ;

begin (% main S —> E$ x)

input_token := get_token;
Expression; match (EOF)
end .
< | | < | | > | | >

PL April 17, 2023

Go Back

FULL SCREEN

CLOSE

246 OF 778

| [

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

247 OF 778

4.10. Shift-Reduce Parsing

Bottom-Up Parsing Strategy

The main problem is to match parentheses of arbitrary nesting depths. This
requires a stack” data structure to do the parsing so that unbounded nested
parentheses and varieties of brackets may be matched.

Our basic parsing strategy is going to be based on a technique called shift-
reduce parsing.

shift. Refers to moving the next token from the input token stream into a
parsing stack.

reduce. Refers to applying a production rule in reverse i.e. given a production
X — « we reduce any occurrence of « in the parsing stack to X.

“In the case of recursive-descent parsing the stack is provided by the recursion facility in the language of implementation.

|

<< | > | ’ > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 248 OF 778
| ’ | ’ PL April 17, 2023 !

Reverse of Right-most Derivations

The result of a Bottom-Up Parsing technique is usually to produce a reverse
of the right-most derivation of a sentence.

Example For the ambiguous grammar (G| and corresponding to the right-
most derivation 2 we get

y+4xz &<
I+4 x7z <«
EF+4x7z <«
E+Cxz <«
E+FExz <«
Exz =
ExI S
ExE =
E S

Fully Bracketed Expression

Consider an example of a fully bracketed expression generated by the simple
left-recursive grammar defined earlier.
The main questions are

e \When to shift and when to reduce?

e If reduce then what production to use?

<< | ‘ | | ’ > | ‘ > > PL April 17, 2023 Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 250 OF 778

Shift-reduce parsing: Invariant

Given a sentence generated by the grammar, at any stage of the pars-
ing, the contents of the stack concatenated with the rest of the input

token stream should be a sentential form of a right-most derivation of

the sentence.

B

<<«

| ‘ - | ‘ = | ‘ >> PL April 17, 2023 AR | ‘

Parsing: FBO

r2 E— T

A T —D

Principle:
Reduce

reduce is
impossible

M.E— E@& T

B T— T@ D

whenever possibl
Shift only when

P.

"D —@ @ ©€E0

Shift

|

<<

>>

| Go BACK | | FuLL SCREEN
1 !

PtAprit 17, 20231

CLOSE

252 OF 778

Parsing: FB1

ME—E@& T
2 E— T
B T— T@ D
rda T — D

"D —@ @ ©€e0
@0 0®00

Principle:

Reduce
whenever possible.
Shift only when
reduce is
impossible

© Shift

» ! ! » > ! | Go BACK ! ! FuLL SCREEN ! ! CLOSE | ‘ 253 OF 778 | ‘

PtAprit 17, 20231

Parsing: FB2

ME—E@®& T
2 E— T
B T— T@ D
rda T — D

"D —@ @ ©€E0
®0® @®OY

Principle:

Reduce
whenever possible.
Shift only when
reduce is
impossible

Shift

» ! ! » > ! | Go BACK ! ! FuLL SCREEN ! ! CLOSE | ‘ 254 OF 778 | ‘

PtAprit 17, 20231

Parsing: FB3

ME—E@®& T
2 E— T
B T— T@ D
rda T — D

"D —@ @ ©€E0
(=> (0@ (D b))

Principle:

Reduce
whenever possible.
Shift only when
reduce is
impossible

Reduce

» ! ! » > ! | Go BACK ! ! FuLL SCREEN ! ! CLOSE | ‘ 255 OF 778 | ‘

PtAprit 17, 20231

Parsing: FB4

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©cED

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

P.

D

|

<<

i

>>

Reduce

Go BACK | ‘ FULL SCREEN
1 !

CLOSE

PLAprt 17, 20231

256 OF 778

Parsing: FB5

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©cED

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

P.

T

|

<<

i

>>

Reduce

Go BACK | ‘ FULL SCREEN
1 !

CLOSE

PLAprt 17, 20231

257 OF 778

Parsing: FB6

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©cED

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

P.

E

|

<<

i

>>

Shift

Go BACK | ‘ FULL SCREEN
1 !

CLOSE

PLAprt 17, 20231

258 OF 778

Parsing: FB7

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©ED

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

P.

E

|

<<

i

>>

Shift

Go BACK | ‘ FULL SCREEN
1 !

CLOSE

PLAprt 17, 20231

259 OF 778

Parsing: FB8

ME—E@&T

r2 E— T

B T— T@ D

A T — D

"D —@ @ | ©cED

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

E.

eamie®p

|

<<

i

>>

Reduce

Go BACK | ‘ FULL SCREEN
1 !

CLOSE

PLAprt 17, 20231

260 OF 778

Parsing: FB9

ME—E@& T

r2 E— T

B T— T@ D

rda T — D

"D —@ @ | ©ce0

Principle:

Reduce
whenever possible.
Shift only when
reduce is
impossible

@m@d|o

Reduce

i

» ! ! » > ! ‘ Go BACK ! ! FuLL SCREEN ! ! CLOSE | ‘ 261 OF 778 | ‘

PLAprit 17, 20231

Parsing: FB10

ME—E@&T

r2 E— T

B T— T@ D

rda T —D

"D —@ @ | ©cED

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

E.

@m@id -

|

<<

i

>>

Reduce?

‘ Go BACK | ‘ FuLL SCREEN
| !

PLAprt 17, 20231

CLOSE

262 OF 778

Parsing: FB11

ME—E@&T

r2 E— T

B T— T@ D

rda T —D

"D —@ @ | ©cED

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

P.

@m@d -

@@ Shift

|

<<

i

>>

‘ Go BACK ! ! FuLL SCREEN ! ! CLOSE | ‘ 263 OF 778 | ‘

PLAprt 17, 20231

Parsing: FB12

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ ©cED

|

@00

Principle:

Reduce 03
whenever possible. T
Shift only when @
reduce is e
impossible c

© Shift
P | ‘ \A | > | | > | Go BACK ! ! FULL SCREEN ! !

PLAprit 17, 20231

CLOSE

264 OF 778

Parsing: FB13

ME—E@&T

2 E— T

B T— T@ D

i T — D

"D —@ @ | ©cED

|

0N
Principle: (b)
Reduce 0
whenever possible. T
Shift only when @
reduce is e
impossible c
0 Reduce
P | ‘ \A | > | | > | Go BACK ! ! FULL SCREEN ! !

CLOSE

PLAprit 17, 20231

265 OF 778

Parsing: FB14

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©ceQ

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

L.

.m..—i.U

|

<<

>>

Reduce

Go BACK ! !

FuLL SCREEN

PLAprit 17, 20231

LOSE

266 OF 778

Parsing: FB15

ME—E@& T

r2 E— T

B T— TG D

4 T — D
D@ @ | ©cd

0N

Principle: D

Reduce 0

whenever possible. T

Shift only when 0

reduce is

impossible :

Q Reduce?

» ! ! » > ! ‘ Go BACK ! ! FULL SCREEN ! ! LOSE | ‘ 267 OF 778 | ‘

PLAprit 17, 20231

Parsing: FB16

ME—E@& T

r2 E— T

B T— TG D

4 T — D
D@ @ | ©cd

0N

Principle: D

Reduce 0

whenever possible. T

Shift only when 0

reduce is

impossible :

© No, REDUCE!

» ! ! » > ! ‘ Go BACK ! ! FULL SCREEN ! ! LOSE | ‘ 268 OF 778 | ‘

PLAprit 17, 20231

Parsing: FB17

ME—E@& T

r2 E— T

B T— T@ D

i T — D
D@ @ | ©cd

Principle:

Reduce
whenever possible.
Shift only when
reduce is
impossible

.rn..-l

Reduce?

» ! ! » > ! ‘ Go BACK ! ! FULL SCREEN ! ! LOSE | ‘ 269 OF 778 | ‘

PLAprit 17, 20231

Parsing: FB18

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©cE0

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

L.

.rn..""'

|

<<

>>

Shift

Go BACK

FuLL SCREEN

PLAprt 17, 20231

LOSE

270 oF 778

Parsing: FB19

ME—E@& T

r2 E— T

B T— TG D

i T — D
D@ @ | ©cd

Q)

Principle:
Reduce 9
whenever possible. E
Shift only when 0
reduce is
impossible :

0 Reduce

» ! ! » > ! ‘ Go BACK ! ! FULL SCREEN ! ! LOSE | ‘ 271 OF 778 | ‘

PLAprit 17, 20231

Parsing: FB20

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ ©ceQ

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

L.

|

<<

> >

Reduce

Go BACK ! !

FuLL SCREEN

PLAprt 17, 20231

LOSE

272 OF 778

Parsing: FB21

ME—E@& T

r2 E— T

B T— T@ D

rd T — D
D@ @ | ©cd

Q)

Principle:
Reduce
whenever possible.
Shift only when T
reduce is
impossible :

0 Reduce?

» ! ! » > ! ‘ Go BACK ! ! FULL SCREEN ! ! LOSE | ‘ 273 OF 778 | ‘

PLAprit 17, 20231

Parsing: FB22

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©cE0

Principle:
Reduce

whenever possible.

Shift only when

reduce is
impossible

|

<<

>>

No, REDUCE!

Go BACK | ‘ FULL SCREEN
1 !

PLAprt 17, 20231

LOSE

274 OF 778

Parsing: FB23

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©cE0

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

L.

E

|

<<

> >

Shift

Go BACK

FuLL SCREEN

PLAprt 17, 20231

LOSE

275 OF 778

Parsing: FB24

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©ceQ

Principle:
Reduce

whenever possible.

Shift only when

reduce is
impossible

B2 me&

|

<<«

> >

Reduce

Go BACK ! !

FuLL SCREEN

PLAprit 17, 20231

LOSE

276 OF 778

Parsing: FB25

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©ceQ

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

L.

D

<<

> >

Reduce

|

Go BACK I ‘
|

FuLL SCREEN

|

PLAprit 17, 20231

LOSE

| |

277 OF 778

| |

Parsing: FB26

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©ceQ

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

L.

<<

> >

Reduce

|

Go BACK I ‘
|

FuLL SCREEN

|

PLAprit 17, 20231

LOSE

| |

278 OF 778

| |

Parsing: FB27

ME—E@&T

r2 E— T

B T— T@ D

A T —D

"D —@ @ | ©ceQ

Principle:
Reduce

whenever possibl

Shift only when

reduce is
impossible

L.

E

<<

> >

Reduce

|

Go BACK I ‘
|

FuLL SCREEN

|

PLAprit 17, 20231

LOSE

| |

279 OF 778

| |

Unbracketed Expression

Consider an example of an unbracketed expression which relies on the prece-
dence rules as defined in the grammar.

|

<< | > > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 280 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

Parsing: UBO

rn. E—E@ T
2 E—=T
B3 1T —T@ D
r4 T—=D
D —@ @ @0
(& @ @ O)

|

<<«

Go B | |
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

281 OF 778

Parsing: UB1

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T— T@ D
T—D

D—@ @ | @ =0

Principle:
Reduce

whenever possible|

Shift only when
reduce is
impossible

Shift

|

<<«

>>

Go B
PL April 17, 2023 ‘ 0 AR

FuLL SCREEN

CLOSE

282 OF 778

Parsing: UB2

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—D

D— @ @ | @ =0

D Reduce by r5

|

<<«

>>

Go B
PL April 17, 2023 ‘ 0 AR

FuLL SCREEN

CLOSE

283 OF 778

Parsing: UB3

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T— T@ D
T —D

D—@ @ | @ =0

Reduce by r4

|

<<

>>

Go B
PL April 17, 2023 ‘ 0 AR

FuLL SCREEN

CLOSE

284 OF 778

Parsing: UB4

rl.

r2
r3

r4
r5

E— E@ T

E— T

T—T@ D
T— 1D

D —@ @ | @ =0

Reduce by r2

|

<<

>>

Go B
PL April 17, 2023 ‘ 0 AR

FuLL SCREEN

CLOSE

285 OF 778

Parsing: UB5

|

<<

. E—E@ T
R E—T
B3 1T —T@ D
r4 T—=D
s pD—@ @ | ©ED
(a) (1) (b)
) Shift
| ‘ » | ‘ > > | Go BAcCkK | ‘ FULL SCREEN

PL April 17, 2023

CLOSE

286 OF 778

Parsing: UB6

|

<<

. E—E@ T
2 E—= T
B3 1T —T@ D
r4 T—=D
s pD—@ @ | ©ED
() (b)
@ Shift
)
E
| ‘ » | ‘ > > | Go BAcCkK | ‘ FULL SCREEN

PL April 17, 2023

CLOSE

287 OF 778

Parsing: UB7

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

Reduce by r5

|

<<

>>

Go B | |
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

288 OF 778

Parsing: UB8

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

Reduce by r4

|

<<

>>

Go B | |
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

289 OF 778

Parsing: UB8a

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—D

D—@ @ I ©c0

Reduce by r4

|

<<

>>

Go B | |
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

290 oF 778

Parsing: UB9a

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

Reduce by rl

|

<<

>>

Go B | |
PL April 17, 2023 ‘ 0 AR

FuLL SCREEN

CLOSE

291 OF 778

Pars

ing: U

B10a

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

m

Shift

|

<<

> | | > |

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

292 OF 778

Parsing: UB11a

|

<<

P
r. E—E@ T
re g— T
B3 1T —T@ D
r4 T—D
s pD—@ @ | @EQ
(b) Shift
0
E
N\
| ‘ | 2 | ‘ > > | Go BAck | ‘ FULL SCREEN

PL April 17, 2023

CLOSE

293 OF 778

Pars

ing: U

B12a

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

m

Reduce by r5

|

<<

> | | > |

PL April 17, 2023

Go BAck | ‘

FuLL SCREEN

CLOSE

294 OF 778

Pars

ing: U

B13a

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

m

Reduce by r4

|

<<

> | | > |

PL April 17, 2023

Go BAck | ‘

FuLL SCREEN

CLOSE

295 OF 778

Parsing: UB14a

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

Get back!

Cév\}

N\
&.
E
0)
E

Reduce by r2

|

<<«

>>

| PL April 17, 2023

Go BAck | ‘

FuLL SCREEN

CLOSE

296 OF 778

Parsing: UB14b

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

></

E

AN

Reduce by r2

|

<<«

>>

PL April 17, 2023 ‘

Go BAck | ‘

FuLL SCREEN

CLOSE

297 OF 778

Parsing: UB13b

rn. E—E@ T

r2z e—T

BT —=T@ D

r& T —D

"D —@ @ OO0

Get back!

S~

N

Reduce by r4

N
N

e

N

|

<<«

>>

Go B | ‘
PL April 17, 2023 ‘ 0 AR

FuLL SCREEN

CLOSE

298 OF 778

Parsing: UB12b

rl.

r2
r3

r4
r5

E—E@ T

E—T

7T—T@ D

T—D

D—@ @ I ©c0

Get back!

e

Reduce by r5

AN

|

<<«

>>

Go B | |
PL April 17, 2023 ‘ 0 AR

FuLL SCREEN

CLOSE

299 OF 778

Parsing: UB11b

|

<<

. E—E@ T
R E—T
B3 1T —T@ D
r4 T—=D
s pD—@ @ | ©ED
Get back! Shift
| ‘ » | ‘ > > | Go BAcCkK | ‘ FULL SCREEN

PL April 17, 2023

CLOSE

300 oF 778

Pars

ing: UB10b

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ | @ED

|

<<

(b)
~ L~
Getback! [T Shift
- E S~
| ‘ > | ‘ »>> | Go BAck | ‘ FULL SCREEN

PL April 17, 2023 ‘

CLOSE

301 oF 778

Parsing: UB9b

rn. E—E@ T
2 E— T
B 7T —T@ D
r4 T—>Ij

"D —@ @ OO0

W (b)
Get back to
wher e you
once belonged! \></
L~ >~ Reducebyril
J
» | ‘ > | PL April 17, 2023 ‘ Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 302 OF 778 | ‘

Parsing: UB8b

mod-‘“?d :
. E—E@ T / Principle:
N
2 E—=1T Reduce whenever possible, but
3 7 —T@ D but depending upon
4 T—=D (lookahead]

s pD—@ @ | ©ED %

(1) (b)
Shift instead
of reduce here!

S d

T Reduce by r4
T~

yd E

» | ‘ »> | i Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 303 OF 778 | ‘
PL April 17, 2023

Parsing: UB8

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

Reduce by r4

|

<<

>>

Go B | |
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

304 oF 778

Parsing: UB9

|

<<

r. E—E@ T
re g— T
B3 1T —T@ D
r4 T—D
s pD—@ @ | @EQ
(b)
0D Shift
T
()
E
| ‘ | 2 | ‘ > > | Go BAck | ‘ FULL SCREEN

PL April 17, 2023

CLOSE

305 oF 778

Parsing

- UB10

|

<<

rn. E—E@ T
2 E—=T
B T—T@ D
r4 T—>Ij
s D—@ @ | OED
® Shift
0
T
&
E
| | . || - | Gomox | [Fomsawm | [o | [sworrs ||

PL April 17, 2023

Parsing: UB11

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

Reduce by r5

D
@
T
&

E

|

<<

> | | > |

Go B | |
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

307 oF 778

Parsing: UB12

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

Reduce by r3

|

<<

> | | > |

Go B | |
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

308 oF 778

Parsing: UB13

rl.

r2
r3

r4
r5

E—E@ 71
E— T
T—T@ D
T—=D

D—@ @ I ©c0

Reduce by rl

|

<<

> | | > |

Go B | |
PL April 17, 2023 ‘ 0 AR

FuLL SCREEN

CLOSE

309 oF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

310 oF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

311 oF 778

4.11.

Bottom-Up Parsing

Bottom-Up Parsing

|

<<

Go B
>> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

312 oF 778

rn. E— E@ T

r2 E— T
B 71— T@ D

B

<<«

>>

r4

T —=D

s D—@ @ | @ 0

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

313 oF 778

rn. E— E@ T

r2 E— T
B 71— T@ D

B

<<«

>>

ra T —=D

s D—@ @ | @ 0

Go BAck FuLL SCREEN

PL April 17, 2023

CLOSE

314 oF 778

rn. E— E@ T

r2 E— T
B 71— T@ D

B

<<«

>>

ra T —=D

s D—@ @ | @ 0

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

315 oF 778

rn. E— E@ T

2 g— T
B 71— T@ D

(o)

B

<<«

>>

ra T —=D

D —@ @ | @0

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

316 OF 778

rn. E— E@ T

r2 E— T
B 71— T@ D

B

<<«

ra T —=D

s D—@ @ | @ 0

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

317 oF 778

rn. E— E@ T

2 BE— T
B 71— T@ D

(m)

B

<<«

>>

r4

D —@ @ | @0

PL April 17, 2023

T —=D

Go BA(\){(

FuLL SCREEN

CLOSE

318 oF 778

rn. E— E@ T

2 BE— T
B 71— T@ D

(m)

B

<<«

>>

r4

T —=D

D —@ @ | @0

PL April 17, 2023

Go AACK

FuLL SCREEN

CLOSE

319 oF 778

rn. E— E@ T

r2 E— T
B 71— T@ D

B

<<«

>>

r4

T —=D

s D—@ @ | @ 0

PL April 17, 2023

Go BAA{(

FuLL SCREEN

CLOSE

320 OF 778

rn. E— E@ T

2 g— T
B 71— T@ D

(o)

B

<<«

>>

r4

PL April 17, 2023

T —=D

D —@ @ | @0

Go BAck

FULL\gcREEN

CLOSE

321 OF 778

rn. E— E@ T

2 g— T
B 71— T@ D

(o)

B

<<«

>>

r4

PL April 17, 2023

T —=D

D —@ @ | @0

Go BAck

FuLL SCREEN

CLOSE

322 OF 778

rn. E— E@ T

2 g— T
B 71— T@ D

(o)

B

<<«

>>

r4

T —=D

D —@ @ | @0

PL April 17, 2023

.

Go BAck

FuLL SCREEN

CLOSE

323 OF 778

rn. E— E@ T

2 g— T
B 71— T@ D

(o)

B

<<«

>>

r4

T —=D

D —@ @ | @0

PL April 17, 2023

.

Go BAck

FuLL SCREEN

CLOSE

324 OF 778

rn. E— E@ T

2 g— T
B 71— T@ D

B

<<«

>>

r4

T —=D

D —@ @ | @0

PL April 17, 2023

.

Go BAck

FuLL SCREEN

CLOSE

325 OF 778

Parsing: Summary: 1
e All high-level languages are designed so that they may be parsed in this

fashion with only a single token look-ahead.

e Parsers for a language can be automatically constructed by parser-generators
such as Yacc, Bison, ML-Yacc and CUP in the case of Java.

e Shift-reduce conflicts if any, are automatically detected and reported by the
parser-generator.

e Shift-reduce conflicts may be avoided by suitably redesigning the context-
free grammar.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Parsing: Summary: 2

e VVery often shift-reduce conflicts may occur because of the prefix problem. In
such cases many parser-generators resolve the conflict in favour of shifting.

e There is also a possiblility of reduce-reduce conflicts. This usually happens

when there is more than one nonterminal symbol to which the contents of
the stack may reduce.

e A minor reworking of the grammar to avoid redundant non-terminal symbols
will get rid of reduce-reduce conflicts.

The Big Picture

|

. Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’
PL April 17, 2023

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

328 OF 778

| [

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

329 OF 778

| [

4.12. Simple LR Parsing

Parsing Problems 1

The main question in shift-reduce parsing is:

When to shift and when to reduce?

To answer this question we require
e more information from the input token stream,
e to look at the rest of the input token stream and then take a decision.

But the decision has to be automatic. So the parser requires some rules. Once
given the rules we may construct the parser to follow the rules.

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 330 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

|

Parsing Problems 2

But for a very large program it may be impossible to look at allthe input before
taking a decision. So clearly the parser can look at only a limited amount of
the input to take a decision. So

The next question:

How much of the input token stream would the parser require?

Disregarding the very next input token as always available, the length of the
extra amount of input required for a shift-reduce decision is called the looka-

head.

<<«

PL April 17, 2023

Parsing Problems 3

Once all the input has been read, the parser should be able to decide

in case of a valid sentence that it should only apply reduction rules and
attempt to reach the start symbol of the grammar only through reductions
and

in case of an invalid sentence that a grammatical error has occurred in
the parsing process

To solve this problem we augment every grammar with a new start symbol S
and a new terminal token $ and a new special rule. For our previous grammar
we have the new rule

S — ES

<<«

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Augmented Grammar

Consider the following (simplified) augmented grammar with a single binary
operator — and parenthesis. We also number the rules.

1. S — E$
2. F — E-T
3. FE — T
4. T — «a
5. T — (F)

In an augmented grammar the start symbol does not occur on the right hand
side of any production.

<<«

PL April 17, 2023

LR(0) Languages

LR(0) languages are those context-free languages that may be parsed by taking
deterministic shift-reduce decisions only based on the contents of the parsing
stack and without viewing any lookahead.

e ‘L" refers to reading the input from left to right,
o “R" refers to the (reverse) of rightmost derivation
o “0" refers to no-lookahead..

e Many simple CFLs are LR(0). But the LR(0) parsing method is too weak
for most high-level programming languages.

e But understanding the LR(0) parsing method is most crucial for understand-
ing other more powerful LR-parsing methods which require lookaheads for
deterministic shift-reduce decision-making

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

LR-Parsing Invariant
In any LR-parsing technique the following invariant holds.

For any syntactically valid sentence generated by the augmented gram-
mar, the concatenation of the stack contents with the rest of the input
gives a sentential form of a rightmost derivation.

Hence at any stage of the parsing if € (N UT)" is the contents of the
parsing stack and = € TS5 is the rest of the input that has not yet been read,
then ax is a sentential form of a right-most derivation.

<< | ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 335 OF 778

LR(0) Item

An LR(0) item consists of an LR(0) production rule with a special marker 5
on the right hand side of rule.

e The marker is different from any of the terminal or nonterminal symbols of
the grammar.

e The marker separates the contents of the stack from the expected form of
some prefix of the rest of the input.

e Given a rule X — «, where X is a nonterminal symbol and « is a string
consisting of terminal and non-terminal symbols, an LR(0) item is of the
form

X — Bavy

where o = 3.
o For each rule X — «, there are |a| 4 1 distinct LR(0) items — one for each

B C?SljélQpﬁmw Q
| . | > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 336 OF 778
e | ’ | PL April 17, 2023 ’ i !

|

What does an LR(0) item signify?
The LR(0) item

X — Bay

signifies that at some stage of parsing

e 3 is the string (of terminals and nonterminals) on the top of the stack and

e some prefix of the rest of the input can be generated by the sentential form

y
so that whenever 3+ appears on the stack, 8y may be reduced immediately

to X.

PL April 17, 2023

LRO Parsing Strategy

The LRO parsing strategy is to

1. construct a DFA whose alphabet is N UT U {5}

2. use the parsing stack to perform reductions at appropriate points
The LRO parsing table is hence a DFA with 3 kinds of entries.

shift 7 in which a terminal symbol is shifted on to the parsing stack and the
DFA moves to state 1.

reduce j a reduction using the production rule j is performed

goto k Based on the contents of the stack, the DFA moves to state .

BAC | ’
| ’ < | ’ > | ’ > PL April 17, 2023

Favourite Example

Consider our favourite augmented grammar

1. S — E$
2. F — E-T
3. FE — T
4. T — «a
5. T — (F)

<< | ‘ | | ‘ | | ’ > > Go BAck

PL April 17, 2023

| |

339 OF 778

|

Rule 1: ltems

Rule 1
R1. S — ES
has the following three items
1.1 5 — AE$
112 5 — EA$
113 S — ES,

one for each position on the right hand side of the rule.

B | ’
| ’ D | ’ i | ’ > PL April 17, 2023 °

Rule 2

has the following items

Rule 2: ltems

R2. F — E-T

121 E — oE-T
122 B — Ea—T
123 B — E—,T
124 F — E-T,

. Go BAck
PL April 17, 2023

FuLL SCREEN

CCCCC

Rule 3

has just the items

Rule 3: ltems

R3. FE =T

131 E — AT

<<«

> > . Go BACK | ’ FuLL SCREEN | ’
PL April 17, 2023

Rule 4

has the items

Rule 4: ltems

R4. T — «a

1417 — AQ
142T — a,

<<«

| 4.4

O BACK | ’
PL April 17, 2023

Rule 5

has the items

Rule 5: ltems

R5. T — (F)

51T — A()
152717 — <A)
I53T — (Ea)
[54T — (E)a

E
E

Go B
PL April 17, 2023 0 PACK

FuLL SCREEN

CCCCC

Significance of 11.*

I1.1 S — L FES. Hence

1. The parsing stack is empty and

2. the entire input (which has not been read yet) should be reducible to £
followed by the $.

1.2 S — E,5. Hence

1. I/ is the only symbol on the parsing stack and
2. the rest of the input consists of the terminating symbol 5.

I1.3S — E$,. Hence

1. There is no input left to be read and
2. the stack contents may be reduced to the start symbol

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

DFA States: Initial and Final
e Clearly the initial state S1 of the DFA will correspond to item I1.1.

e [here should be a state corresponding to item [1.2.

e There should be a goto transition on the nonterminal symbol £ from the

initial state (corresponding to item |1.1) to the state corresponding to item
11.2.

e The accepting state of the DFA will correspond to item item [1.3.

e There would also be a shift transition on $ from the state corresponding to
item 11.2 to the accepting state corresponding to item |1.3.

e [here should be a reduce action using rule 1 when the DFA reaches the
state corresponding to item |1.3.

<<«

| ’ h l ’ > l ’ > l PL April 17, 2023 0 AK l ’

Input Possibilities: 1
Consider item [1.1.

1. How will a grammatically valid sentence input reduce to E57

From the grammar it is obvious that this can happen only if the input is of

a form such that

(a) it can be reduced to E—T (recursively) or
(b) it can be reduced to T

2. How can the input be reduced to the form 7'?
3. How can the input be reduced to the form £ —177

<]| | | | | . Gon | |
h h > > PL April 17, 2023 0 DAk

Input Possibilities: 2
Consider item [1.1.
1. How will a grammatically valid sentence input reduce to E'$?
2. How can the input be reduced to the form 7'?

(a) If the enire input consists of only a then it could be reduced to T or

(b) If the entire input could be reduced to the form (E) then it could be
reduced to 7.

3. How can the input be reduced to the form E—1"7

<<«

PL April 17, 2023

Input Possibilities: 3
Consider item [1.1.
1. How will a grammatically valid sentence input reduce to E$?
2. How can the input be reduced to the form 17
3. How can the input be reduced to the form E—T'7?

(a) If the entire input could be split into 3 parts «, 5 and -y such that
I. v is a prefix that can be reduced to F, and
i. 3 = —, and
iii. 7y is a suffix that can be reduced to T’
then it could be reduced to £—T

<<«

PL April 17, 2023

Closures of ltems

Theoretically each item is a state of a NFA. The above reasoning leads to
forming closures of items to obtain DFA states, in a manner similar to the the
subset construction. Essentially all NFA states with similar initial behaviours
are grouped together to form a single DFA state.

NFA to DFA construction

<<«

PL April 17, 2023

Algorithm 4.4
CLOSUREOFITEMS (7) i

p

Requires: Set [C 7 of LR(0) items of a CFG with rule set P
Ensures: Closure of I for a subset I C 7 of items
repeat
¢ for each A — o, Xp el
do {for each X - y¢eP
do [:=1TU{X — v}
\until no more changes occur in I

<<«

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

351 OF 778

|

State Changes on Nonterminals

As in the case of the NFA to DFA construction with each state transition we
also need to compute closures on the target states.

<<«

PL April 17, 2023

Algorithm 4.5
GoTo (I,X) &

(Requires: I C 7 of LR(0) items of a CFG G = (N, T, P,S), X € N
Ensures: States of the DFA: Each state in the DFA is a closure of items
J = 0;
for each A — o, Xp el
do J:=JU{A — aX,f};
K := CLOSUREOFITEMS(J);
| return (K)

-

<<«

> > Go Bac
PL April 17, 2023 0 PACK

| |

FuLL SCREEN

| |

CLOSE

| |

353 OF 778

|

State S1
S1 = CLOSUREOFITEMS({S — 4 E$})
= {S — AE$,E — a1, E — \T,
I — a0, 1 — A(E)}

S1 L CLOSUREOFITEMS({T — (aF)}) = 52

S1 25 CLOSUREOFITEMS({S — Ex$, B — Ea—T}) = S3

s1 L, CLOSUREOFITEMS({E — T'a}) = 57

S1 — CLOSUREOFITEMS({T — aa}) = S8

« | \ > | \ | coBax | ‘ LLLLLLLLLL | ‘
:H b | ‘ >> PL April 17, 2023

CCCCC

State S2
S2 = CLOSUREOFITEMS({T — (uF)})
= {T = A(E),E = oaE-T,E — ,T,
T — ACL,T — A(E)}

52 L CLOSUREOFITEMS({T — (aF)}) = 52

so £, CLOSUREOFITEMS({T — (FEa),E — Ea—T}) =59

so L, CLOSUREOFITEMS({E — T'a}) = 57

52 — CLOSUREOFITEMS({T — aa}) = S8

|

> | - Go B | |
| ‘ >> PL April 17, 2023 0 AR

S9— 1 Fa),EE— E\—T
2= AT = (Eal. B2 Ea- T}

53 = CLOSUREOFITEMS({S — Ea$, F — Ea—TY})
= {S — EA$,E — EA—T}

However,

53 — CLOSUREOFITEMS({E — E—,T})

and
CLOSUREOFITEMS({E — E—,T})

= {E — E—AT,T — <AE>,T — ACL}
= 54

The closures of the other reachable sets of items are themselves.
e Sh={F — E-T,}

e S6 = {S — E$A}

o ST={FE —T,}

¢ S8 ={T — aa}

|

Go B | |
| | > PL April 17, 2023 0 AR

356 OF 778

Example: DFA

S1

S2

T — (uE)
E = ET
E—» T
T —»,a

T —=+.(E)

|

<<«

>>

PL April 17, 2023

Parsing Table

Go BAck

FuLL SCREEN

CLOSE

357 OF 778

Example: Parsing Table

States Input Nonterminals
al(])| S |—|SIE T
S1 |S8|S52 G3| G7
52 | S8S2 G9| G7
S3 ACC| 5S4
S4 | S8|S2 G5
S5 |R2/R2| R2 | R2 |R2
S6 |R1/R1| R1| R1 |R1
S7 |R3/R3| R3 | R3 |R3
S8 |R4/R4| R4 | R4 R4
S9 510 S4
S10 |R5/R5| R5 | R5 |R5

DFA

GGGGGG

LLLLLLLLLL

CCCCC

Example 4.16 Consider the following simple input viz. a$. Here are the parsing steps.

DFA

Parsing Table

[

‘Sl a$%

NS1|a|S8

ST
§S1|T|S7

ISTE[] §
IS1|E|S3

Shift S8
$ Reduce Rule 4
Goto S7
$ Reduce Rule 3
Goto S3
$ Accept

<<«

| 4.4

PL April 17, 2023

Go BAck

CLOSE

| |

359 OF 778

|

Example 4.17 Here is a slightly more complex input a — (a — a)$.

DFA

Parsing Table

[

‘ S1 a—(a—a)$ Shift S8
S1|a|S8 —(a—a)$ Reduce Rule 4
S1|T —(a—a)$ Go to S7
S1|T|S7 —(a—a)$ Reduce Rule 3
S1|E —(a—a)$ Go to S3
S1|E|S3 —(a—a)$ Shift S4
S1|E|S3 S4 (a—a)$ Shift S2
S1|E|S3 S4 | (|S2 a—a)$ Shift S8
S1/E|S3 S41([S2]a|S8 —a)$ Reduce Rule 4
S1|E|S3 S4 1 ([S2|T —a)$ Go to S7
S1|E|S3 S4 1 ([S2|T|S7 —a)$ Reduce Rule 3
S1|E|S3 S41(|S2|E —a)$ Go to S9

DFA

Parsing Table

<<

> Go B | ‘ FuLL S
| ‘ PL April 17, 2023 0 oAk UbL SeREEN

CLOSE

360 oF 778

| [

DFA

Parsing Table

S1|E|S3 S4 S2 S9 —a)$ Shift S4
S1|E|S3 S41(|S2|E|S9 S4 a)$ Shift S8
S1|E|S3 S41(|S2|E|S9 S4|a|S8|)3 Reduce Rule 4
S1|E|S3 S41(|S2|E|S9 S41T)9 Go to S5
S1|E|S3 S41(|S2|E|S9 S4|T|S5|)$ Reduce Rule 2
S1|E|S3 S41(|S2|E)9 Go to S9
S1|E|S3 S4|(|S2|E|S9)9 Shift S10
S1|E|S3 S41(|S2|E|S9 S10 $ Reduce Rule 5
S1|E|S3 S4\|T $ Go to S5
S1|E|S3 S4|T|S5 $ Reduce Rule 2
S1|E $ Go to S3
S1|E|S3 Accept

<<

>>

Go BAck FuLL SCREEN

PL April 17, 2023 | ‘

CLOSE

361 OF 778

|

Exercise 4.3

1. Design a LR(0) parser for the grammar of palindromes. Identify whether there are any conflicts in
the parsing table.

2. Design a LR(0) parser for the grammar of Matching brackets and identify any conflicts.

3. Design a context-free grammar for a language on the terminal symbols a and b such that every string
has more as than bs. Design a LR(0) parser for this grammar and find all the conflicts, if any.

4. Since every reqular expression may also be represented by a context-free grammar design an LR(0)
parser for comments in C.

|

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 362 OF 778
PL April 17, 2023 :

| |

CFG = RLG + Bracket Matching

We use the idea that a context-free grammar is essentially a regular gram-
mar with parentheses matching to arbitrary depths. Hence a DFA with some
reductions introduced may work.

We modify the grammar to have a special terminal symbol called the end-
marker (denoted by $). Now consider the following simple grammar with a
single right-associative binary operator © and bracket-matching.

We create a DFA of “items” which also have a special marker called the “cur-

sor” (a).

|

<< | ’ < | ’ > | ’ > X Go BAck | ’ FULL SCREEN | ’ CLOSE | ’ 363 OF 778
PL April 17, 2023 . !

LR(0) with Right-Association
Consider the following grammar

1. S — E$
2. F — P K
3. F — P
4. P — a

5. P — (F)

The following items make up the initial state S1 of the DFA

1.1 58 — AE$
121 F — AP ' E
141 P — A

:| ’ << | ’ < | ’ > | ’ > | X ’ Go BAck | ’ FULL SCREEN | ’
PL April 17, 2023

CCCCC

Shift-Reduce Conflicts in LR(0)

There is a transition on the nonterminal P to the state S2 which is made up

of the following items.
122 F — P, FE

132 F — P,
Then clearly the LR(0) parser suffers a shift-reduce conflict because
e item 2.2 indicates a shift action,

e item 13.2 produces a reduce action

This in contrast to the parsing table produced earlier where reduce actions took
place regardless of the input symbol. Clearly now that principle will have to be
modified.

The parsing table in this case would have a shift action if the input in state S2
Is a ~ and a reduce action for all other input symbols.

|

| > > > | . ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 365 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

FOLLOW Sets

We construct for each non-terminal symbol a set of terminal symbols that can
follow this non-terminal in any rightmost derivation. In the previous grammar

we have

follow(E) = {5,)}

follow(P) = {"}
Depending upon the input symbol and whether it appears in the FOLLOW set
of the non-terminal under question we resolve the shift-reduce conflict.
This modification to LR(0) is called Simple LR (SLR) parsing method. However
SLR is not powerful enough for many useful grammar constructions that are
encountered in many programming languages.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Computing FIRST Sets
In order to compute FOLLOW sets we require FIRST sets of sentential forms

to be constructed too.

1. first (a) = {a} for every terminal symbol «.

2. € first(X)if X - e€ P.

3.f X = Y1Ys--- Y, € P then first(Yy) C first(X)

4.1f X — Y1Y9---Y. € P then for each i : 7 < k such that Y1Y5---Y,; = ¢,
first(Y;y1) C first(X).

|

Go B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

Computing FOLLOW Sets
Once FIRST has been computed, computing FOLLOW for each non-terminal
symbol is quite easy.
1.5 € follow(S) where S'is the start symbol of the augmented” grammar.

2. For each production rule of the foom A — aBg, first(8) — {e} C
follow(B).

3. For each production rule of the form A — aBg, if ¢ € first(f) then
follow(A) C follow(B).

4. For each production of the form A — aB, follow(A) C follow(B).

“In an augmented grammar, the start symbol does not occur on the right hand side of any production

|

B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

if-then-else vs. if-then

Most programming languages have two separate constructs if-then and
if-then-else. We abbreviate the keywords and use the following symbols

Tokens Symbols
1f '
then
else
booleans
other expressions

S D ct ¥

PL April 17, 2023

if-then-else vs. if-then (Contd.)

and construct the following two augmented grammars G; and Go.

I§]
21
31
41
D1
01
7

S =I5 lo. S =I5
I = U 29. 1 - ibtlFE
I = M 3.1 — a
U —ibtl 4. B — e 1

U —-i1ibtMeU 5. E — ¢
M= ibtMeM
.M — a

L < L«]

GoB | ’
| ’ >> PL April 17, 2023 0 PAcK

Exercise 4.4

1. Prove that grammar Go is ambiguous.

|

2. Construct the LR(0) parsing tables for both Gy and Ga and find all shift-reduce conflicts in the parsing table.

3. Construct the FOLLOW sets in each case and try to resolve the conflicts.

4. Show that the following augmented grammar cannot be parsed (i.e. there are conflicts that cannot be resolved by FOLLOW sets) either by LR(0) or SLR parsers. (Hint

First construct the LR(0) DFA).
1. § — E§
2. FE - L=R
3. E = R
4. L — xR
5 L — a
6. R — L
<< | ’ < | ’ > | ’ > > Go Back | ’ FULL SCREEN | ’ CLOSE | ’

PL April 17, 2023

371 OF 778

| |

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

372 OF 778

5.

Bindings, Attributes & Semantic Analysis

Bindings, Attributes & Semantic Analysis

|

<<

> | ‘ . Go BAcK | ‘ FuLL SCREEN
| ‘ D) | ‘ >> PL April 17, 2023

CLOSE

373 OF 778

Context-sensitive Grammars

Definition 5.1 G = (N,T, P,S) is called a context-sensitive gram-
mar(CSG) if each production is of the form a X — a3, where

e X € N is a nonterminal and

e, 3,7 € (NUT)* are sentential forms.

e The production is terminal if o[is a sentence
Note:

e o and 3 are the context within which the non-terminal X can generate the
sentential form ~.

e Every CFG is also a CSG with rules having empty contexts.
e The parsing problem for CSGs is known to be PSPACE-complete.

|

< > > | X ’ Go BAck | ’ FULL SCREEN | ’ CLOSE | ’ 374 OF 778 | ’
| ’ | ’ | ’ PL April 17, 2023 i !

A Context-sensitive Language

The language {a"0"c"|n > 0} is not context-free but can be generated by the
context-sensitive grammar G = (N, {a, b, c}, P, S) whose productions are

S — aBC|aSBC

aB — ab bB —— bb
b(C' — be cC' — cc
CB — CZ cCZ — Wz

W7 — WC woc — BC

Go B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

376 OF 778

| [

Context-sensitive Analysis: Preamble
The Big Picture

e Every programming language can be used to program any computable func-
tion, assuming of course, it has

— unbounded memory, and

— unbounded time

e Context-free grammars are used to specify the phrase structure of a language
in @ manner that is free of all context.

<<«

PL April 17, 2023

Semantic Analysis

The Big Picture

1. Context-free grammars are not powerful enough to represent all computable
functions.

Example 5.2 The language {a"0"c"|n > 0} is not context-free but can
be generated by a context-sensitive grammar.

2. Semantic analysis is an essential step to

e producing the abstract syntax trees (AST)

e generating IR-code, since it requires the computation of certain bits and
pieces of information called attributes (which include information to be
entered into the symbol table or useful for error-handling)

e allocating memory for individual “objects” (variables, constants, struc-
tures, arrays etc.)

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 378 OF 778
| ’ | ’ | ’ | PL April 17, 2023 ’ ' !

5.1. Context-sensitive analysis and Semantics
The Big Picture

The parser for a context-free grammar transforms the token stream into a derivation tree (which we also call a concrete
parse tree)’. What we actually require in order to perform a computation is really an abstract syntax tree.

Example 5.3 Consider the two sentences a — a/b and a — (a/b) which are both valid sentences generated by the grammar
of our favourite example.

The (possibly modified grammar) required for parsing

e treats all tokens uniformly since the phrase structure of the grammar is all-important during the parsing process,
e introduces bracketing and punctuation marks for

— disambiguation and to override associativity when needed,

— to facilitate easy parsing

3The term parse tree is a much abused term used to refer to anything from a derivation tree to an abstract syntax tree (AST).

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 379 OF 778

|

But these symbols do not by themselves carry any semantic* information.
e also has many more non-terminal symbols that are required for parsing, but which carry no semantic significance

— either for the end-user of the language

— or for the later phases of the compilation process.

Both expressions in example 5.3 have the same meaning (semantics) if we assume that the operations are subtraction
and division over integers respectively, and that division has higher precedence than subtraction. But the sentences are
syntactically different and correspondingly have different parse trees (see fig. 5). Both the expressions may be represented
by the following abstract syntax tree (AST) which gives the hierarchical structure of the expression.

Notice that in figure 6

e Every node in the AST is labelled by a token.

e The AST abstracts away from non-terminals which have significance only for the parsing of the expression and have no
semantic significance whatsoever,

e The AST abstracts away from bracketing and punctuation mechanisms and provides a hierarchical structure containing
only the essential operators and operands.

e The AST clearly distinguishes the operators (based on their arity) from the operands (which are leaves of the AST).

4Semantic analysis is another much abused term, often used by compiler writers to included even merely context-sensitive information.

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 380 OF 778 |
| ’ | ’ | ’ PL April 17, 2023 !

Context-sensitive Analysis: 1

The Big Picture

e There are aspects of a program that cannot be represented/enforced by a
context-free grammar definition. Examples include

—scope and visibility issues with respect to identifiers in a program.
— type consistency between declaration and use.

— correspondence between formal and actual parameters (example 5.2 is
an abstraction where a" represents a function or procedure declaration
with n formal parameters and 0" and ¢ represent two calls to the same
procedure in which the number of actual parameters should equal n).

e Many of these attributes are context-sensitive in nature. They need to be

computed and if necessary propagated during parsing from wherever they
are available.

|

<< | > > > | . ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 381 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

Context-sensitive Analysis: 2
The Big Picture

e The parser of a programming language provides the framework within which
the |IR-code or even the target code is to be generated.

e The parser also provides a structuring mechanism that divides the task of
code generation into bits and pieces determined by the individual nontermi-
nals and production rules.

e The parser provides the framework from within which the semantic analysis
(which includes the bits and pieces of information that are required for code
generation) is performed

|

<< | > > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 382 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

383 OF 778

| [

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

384 OF 778

| [

5.2. Binding

Binding
Binding is a central and fundamental concept in the definition of programming
languages and their semantics. Programs written in a programming language
deal with various entities — variables, subprograms, expressions, declarations,

commands, modules, objects, object classes etc. These entities carry with them
certain properties or values called attributes.

Definition 5.4 The binding of a program entity to an attribute is simply
the choice of the attribute from a set of possible attributes.

<<«

PL April 17, 2023

Programming Language Entities

Programming languages vary widely in the various entities that they can deal
with, in the number of attributes that are bound to each entity, the times
at which these bindings take place (binding time) and the stability of these
bindings (whether the bindings are fixed or modifiable).

<<«

PL April 17, 2023

Example 5.5

e A variable has various attributes such as its name, its type, a storage area where its value is stored, a size depending
on its type etc.

— A wvariable in an imperative language also has a binding to its location and each of these locations has a binding to
its value.

— A wvariable in a pure functional setting needs to be bound to its value.

— In addition a variable may be a formal parameter of some other entity such as a procedure or function and has certain

parameter-passing conventions associated with it.

e A procedure or function has a name. formal parameters of certain types, return parameters of certain types and
parameter-passing conventions associated with each formal parameter etc.

e A command has certain associated actions determined by its semantics.

The values of the attributes of each entity need to be set before it may be used. Setting the values of these attributes is
called binding. For each entity the attribute information is contained in a repository called a descriptor.

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 387 OF 778 |
| ’ | ’ | ’ PL April 17, 2023 !

Binding times

The binding of attributes to entities may occur at various times during compilation, linking, loading and execution. Broadly
speaking, early binding (also known as static binding and is performed before execution begins) ensures
e carly detection and reporting of errors, rather than delaying them to execution time,
e greater run-time efficiency since the overheads of creating associations have been already dealt with statically (i.e. before
actual execution). Hence compiled code tends to run faster than interpreted code.
On the other hand, late binding
e allows for greater flexibility. In particular interpreters often perform late bindings and therefore allow flexible (and
interactive) code development. However,

e most programming languages that are not statically typed, tend to point out errors during run-time only if a given
operation is not possible. Inadvertent type errors introduced in the program may often lead to unexpected results
because of the lack of type-checking.

Example 5.6 Many implementations of Scheme and LiSP return an empty list when the tail of an empty list s required,
and they tend to return a null when accessing the head of an empty list.

Static or Early binding. These bindings occur before run-time. The term “static” refers to both binding that occurs
before exection and also to the stability of the binding (i.e. it is not modifiable once the binding is done).

<<«

| ’ | | ’ | | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 388 OF 778

|

Language definition time. In most languages the control-flow constructs, the set of primitive types and the construc-
tors available for creating complex types are chosen at language definition time.

Example 5.7 The type “integer” is bound at the language definition time and refers (as closely as possible®) to its
mathematical counterpart namely the algebra of integers and their associated operations and relations.

Language implementation time. Most language manuals leave a variety of issues to the discretion of the language
implementor.

Example 5.8 The “integer” type refers to a finite set of values bound to a certain memory representation — e.q.
byte, full-word, double-word etc. This automatically constrains the set of values that can be termed “integer” in the
programming language.

Compile time or translation time binding. Compilers choose the mapping of high-level constructs to machine code

or IR code, including layout of statically defined data structures.

Example 5.9 Often at compile time only relocatable addresses (i.e. addresses specified as an offset from a possibly
unknown physical address in memory) are specified.

e Fven for variables which have been statically declared and have a known fixed size, the actual physical address is
usually available only at load time.

e In languages that support recursion there may be several activations of the same subprogram present simultaneously
and hence many incarnations of the same variable are present simultaneously and each of them needs to be bound

5The set of integers is actually infinite, however the set of integers representable on a machine with a finite word-length is likely to be finite. This also affects the operations on integers and their behaviour
— e.g. overflow

<< | | ’ > | ’ > > i Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 389 OF 778 |
| ’ PL April 17, 2023 !

to separate physical memory address. The actual binding of the each incarnation of the variable to its memory
location may get fixed only at run-time depending the activation involved.

Program writing time. Programmers of course choose names, algorithms and data structures and describe certain
high-level bindings (between names and data structures for example) at program writing time.

Example 5.10 In some languages which distinguish between reserved words and mere keywords (e.g. Pascal) the
type “integer” may be redefined in a user program and a different representation may be defined for it.

Link time. Most modern compilers support separate compilation — compiling different modules of a program at different
times. They depend on the availability of a library of standard routines. Program compilation is not complete until
various names occurring in the program which depend upon certain modules are appropriately bound by the linker.
The linker chooses the overall layout of the various modules with respect to each other and resolves inter-module
references and references to the names within modules which may be exported to the program.

Load time. Load time refers to the point at which the operating system loads the program into memory so that it may
be run. Most modern operating systems distinguish between virtual and physical addresses. Virtual addresses are
chosen at link time. The binding of virtual addresses to physical addresses takes place at load time.

Dynamic or Late or runtime binding. Many bindings are performed during execution. These are usually modifiable at
run-time (unlike static bindings).

Imperative variables. In most imperative languages variables are bound to a value at run-time and may be repeatedly
modified.

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 390 oF 778 |
| ’ | ’ | ’ PL April 17, 2023 !

Functional variables. In most pure functional languages, the value bound to a variable cannot be modified once a
binding is established, even though the location bound to a variable may be modified at run-time due to garbage
collection and compaction.

Entry into a sub-program or a block. Important classes of bindings take place at the time of entry into the sub-
program or block.

e binding of formal parameters to storage locations and
¢ binding of formal to actual parameters
At arbitrary points during execution. Some bindings may occur at any point during execution.

e Binding variables to values through assignment

e Binding of names to storage locations may change during garbage collection in languages (e.g. SML, LiSP, Java
etc.) which support automatic garbage collection.

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 391 oF 778 |
| ’ | ’ | ’ PL April 17, 2023 !

Introduction to Semantics

Calvin and Hobbes - Verbing Weirds Language - by Bill Watterson for January 25, 1993

I LIKE TO
VYERE WORDS,

I TAKE NOUNS AND

ADJECTWES AMD USE THEM

AS YERRS. REMEMBER

WHEN "ACCESS” WAS A THING?

Now 1TS SOMETHING You Do.
IT GOT VERBED.

VERRING WEIRDS
LANGUAGE .

MAYBE WE CAN ENENTUALLY MAKE
LANGUAGE A COMPLETE IMPEDIMENT
TO UNDERSTANDING.

W 2 S

BSeEaals 5 LA A0 PRI R AR, £65 1

Context-free grammars (actually EBNF) are used to describe the rules that define the grammatical structure of phrases
and sentences in the language. However a manual for a programming language also needs to describe the meaning of each
construct in the language both alone and in conjunction with other constructs. This is to enable users of the language to
write correct programs and to be able to predict the effect of each construct. Implementors of the language need correct
definitions of the meanings to be able to construct correct implementations of the language.

<<«

PL April 17, 2023

Go BAck

| ’ FuLL SCREEN | ‘ CLOSE | ‘

392 OF 778

|

Syntax defines a well-formed program. Semantics defines the meaning of a syntactically correct program. However not
all well-formed programs have well defined meanings. Thus semantics also separates meaningful programs from merely
syntactically correct ones.

“Meaning” in the case of programming languages often refers to the execution behaviour of the program or the individual
constructs. This is useful from an implementation point of view. From a user programmer’s point of view It is possible to
view a programming language as a precise description mechanism that is independent of execution behaviour and restrict
meaning to the “effect” that a program or a construct has on some input (state).

While there are precise means of defining the syntax af the language, most language manuals describe the meanings of the
constructs in natural language prose. This unfortunately is not very desirable as natural language tends to be too verbose,
imprecise and very often ambiguous. On the other hand, if users and implementors have to be on the same page as regards
the behaviour of programs and individual programming constructs a precise and unambiguous definition is required for
this description. Typically a user programmer may misunderstand what a program or a construct will do when executed.
Implementors may interpret the meaning differently and hence different implementaions of the language may yield different
results on the same program.

While there are several formalisms for defining meanings of the constructs of a programming language, they all share the
following characteristics in order to maintain a certain uniformity and applicability for any program written in the language

e Meanings should be syntaz-directed i.e. meanings should be based on the syntactical definition of the language in the
sense that it follows the hierarchy of the non-terminals in the grammar. The syntax (grammar) of the language therefore
provides the framework for the semantics of the language.

<<«

| ’ | | ’ | | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 393 OF 778

|

e The meaning should be compositional i.e. the meaning of a compound construct should be expressed in terms of the
meanings of the individual components in the construct. Hence it is important that the meanings of the most basic
constructs be defined first so that the meanings of the compound constructs may be expressed in terms of the meanings
of the individual components of the compound construct.

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 394 oF 778

|

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

395 OF 778

6.

(Static) Scope Rules

Disjoint Scopes

B

<<«

let
val x = 10;

fun funl | y =

let
in

end

fun fun2

in

funl (fun2 x)

end

]

FL ApriT I7, ZUZ3 |

396 OF 778

Nested Scopes

let

in

B

<«

»>> 3 Go Back | | FULL SCREEN | | CLOSE | | 397 oF 778 | |
| | PL April 17, 2023

Overlapping Scopes

let
val x = 10;

fun funl y =

in

funl (fun2 x)

end

> > Go B | ’ b -
l ’ PL April 17, 2023 oBack | | FULL SCREEN

Spannning

let

in

val x = 10;
fun funl

fun fun2

funl (fun2 x)

end

B

<<

| »>>

PL April 17, 2023

Go Back

FULL SCREEN

CLOSE

399 or 778

Scope & Names

e A name may occur either as being defined or as a use of a previously defined
name

e The same name may be used to refer to different objects.

e The use of a name refers to the textually most recent definition in the
iInnermost enclosing scope

diagram

|

- l ’ < | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Names & References: 0

let
val x = 10; val z = 5;
fun funl | y =
let
val x = 15
in
x+y*z
end
in
funl x
end

Back to Scope &

| ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE
PL April 17, 2023

Names

| ’ 101 oF 778 | ’

Names & References: 1

let

val(x)= 10; val (g = 5;

fun | funl =
let
val(x) = 15
in
X + Y * A
end
in
funl x
end

Back to Scope & Names

| ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE

) | ’ 102 OF 778 | ’
PL April 17, 2023

Names & References: 2

let

val(x)= 10; val (g = 5;

fun | funl =
let
val(x) = 15
in
X + Y * A
end
in
funl| x
end

Back to Scope & Names

| ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE

) | ’ 103 OF 778 | ’
PL April 17, 2023

Names & References: 3

let
val[x)= 10; val (z) = 5;
f funl =
let
val(x) = 15
in
X + Y * A
end
in
funl||x
end

Back to Scope & Names

| ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE

] | ’ 104 OF 778 | ’
PL April 17, 2023

Names & References: 4

let
val[x)= 10; val (g = 5;
f funl =
let
val(x) = 15
in
+y *x 2
end
in
funl||x
end

Back to Scope & Name

| ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE

) | ’ 105 OF 778 | ’
PL April 17, 2023

Names & References: 5

let
val[x)= 10; val (z) = 5;
funl =
let
val(x) = 15
in
x|+ Y * A
end
in
funl||x
end

|

<«

> >

Back to Scop

Names

PL April 17, 2023

0 BAck | ’

FuLL SCREEN

| |

CLOSE

e &

| |

406 OF 778

| |

Names & References: 6

let
val[x)= 10; val (g = 5;
funl =
let
val(x) =\15
in
X)+(y) * (=@
end
in
funl||x
end

|

<«

> >

Back to Scop

Name

PL April 17, 2023

0 BAck | ’

FuLL SCREEN

| |

CLOSE

e &

| |

407 OF 778

| |

Names & References: 7

let

in

val |[x|= 10; val |x

fun funl | y =

let

in

end

fun fun2

funl (fun2 (x)

end

B

<<«

>>

PL April 17, 2023

Back to Sco

Names

FuLL SCREEN

C

pe &

408 oF 778

Names & References: 8

let

T —

in

"

val x| = 10; val (x| =(x

—

fun funl | y =

let

in

end

fun fun2

funl (fun2 (x)

end

B

<<«

>>

PL April 17, 2023

Back to Sco

Names

Go BAck | ‘

FuLL SCREEN

C

pe &

409 oF 778

Names & References: 9

val |[x|= 10; val |x

fun funl | y =1
let

I
™
!

I

in

end

fun fun2

in funl (fun2 (X)
end

Back to Scope & Names

| ‘ »>> Go BAcK | ‘ FULL SCREEN | ‘

C | ‘ 410 778 | ‘
PL April 17, 2023 o

Definition of Names

Definitions are of the form
qualifier name ... = body

e val name =

e fun name (argnames) =

e local definitions
in definition
end

|

a- | | “ | | > | | >

PL April 17, 2023

Use of Names

Names are used in expressions.
Expressions may occur

e by themselves — to be evaluated
e as the body of a definition

e as the Dody of a let-expression

let definitions
in expression
end

|

use of local

- 1 < [+~ 1 = | s
PL April 17, 2023 0 ATk

| |

FuLL SCREEN

| |

CLOSE

| |

412 OF 778

| |

Scope & local

local

in

end

fun funl |y

fun fun3

B

<<

>> PL April 17, 2023

Go Back

FULL SCREEN

CLOSE

413 oF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

414 oF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

415 oF 778

7. Symbol Table

Symbol Table

“The name of the song is called ‘Haddock's Eyes’.”
“Oh, that's the name of the song, is it?” Alice said, trying to feel interested.

“No, you don't understand,” the Knight said, looking a little vexed. “That's what the name is
called. The name of the song really is, ‘The Aged Aged Man’.”

Then I ought to have satd ‘That's what the song is called’?” Alice corrected herself.

“No you oughtn't: that's quite another thing! The song is called ‘Ways and Means’: but that's
only what it's called, you know!”

“Well, what is the song, then?” said Alice, who was by this time completely bewildered.

“I was coming to that”, the Knight said. “The song really is ‘A-Sitting On a Gate’: and the

tune's my own tnvention.

Lewis Carroll, Through the Looking-Glass

|

<< | ’ | | ’ > | ’ > > | . ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 116 OF 778 | ’
PL April 17, 2023 !

Symbol Table:1

The Big picture

e The store house of context-sensitive and run-time information about every
identifier in the source program.

e All accesses relating to an identifier require to first find the attributes of the
identifier from the symbol table

e Usually organized as a hash table” — provides fast access.

e Compiler-generated temporaries may also be stored in the symbol table

“Sometimes other data-structures such as red-black trees are also used.

|

<«

| > > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 117 OF 778
| ’ | ’ | ’ PL April 17, 2023 i !

Symbol Table:2

The Big picture

Attributes stored in a symbol table for each identifier:
o type
® size
e scope/visibility information
e base address

e addresses to location of auxiliary symbol tables (in case of records, proce-
dures, classes)

e address of the location containing the string which actually names the iden-
tifier and its length in the string pool

|

<< | > > > | . ’ Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 118 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

Symbol Table:3

The Big picture

e A symbol table exists through out the compilation (and run-time for debug-
ging purposes).
e Major operations required of a symbol table:
— Insertion
— search
— deletions are purely logical (depending on scope and visibility) and not
physical

e Keywords are often stored in the symbol table before the compilation process
begins.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Symbol Table:4

The Big picture
Accesses to the symbol table at every stage of the compilation process,

Scanning: Insertion of new identifiers.

Parsing: Access to the symbol table to ensure that an operand exists (decla-
ration before use).

Semantic analysis:

e Determination of types of identifiers from declarations

e type checking to ensure that operands are used in type-valid contexts.
e Checking scope, visibility violations.

|

<< | > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 4120 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

Symbol Table:5

The Big picture

IR generation:. Memory allocation and relative” address calculation.
Optimization: All memory accesses through symbol table

Target code: Translation of relative addresses to absolute addresses in terms
of word length, word boundary etc.

“.e.relative to a base address that is known only at run-time

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 421 oF 778
PL April 17, 2023 !

The hash table

Each name is hashed to an index of the hash table whose entry points to a
chain of records where each record contains

e a possible link to the next record on the chain (in case of collisions)
e the name of the identifier

e category (e.g. module, procedure, function, block, record, formal parameter
etc.)

e scope number of the identifier
e type information

e number of parameters (in case of functions, procedures, modules classes
etc.)

e visibility information (derived from qualifiers such as public, private)

|

<«

| > > > | . ’ Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 122 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

| |

©32 Chapter 3 Names, Scopes, and Bindings

Corrected version of page from Michael Scott: Programming Language Pragmatics.

Hash table '*& 2 QC\ < Scope stack
Qg;><§$> Cﬁg% 52&53 %
——>|/| P2 |pr0c | 3 I/l parameters a
SN

& O° &

——>|/| A3 |param| 5 | (2) | — | 5 rocord v with v
5 P2

—»I/I M | mod | 1 I/l — | 3 X y
1 Globals

—>Jrffd[2]0] —]
——»I/I Al |param| 4 | (2) | — |

—»I/I P1 | func | 3 | (1) | parametersh

[T lw ol =]
[Tl Blol =
L>I/| I | var | 1 |(1)| export |

7‘>| | | A2 |param| 4 | (1)| — |

NEICDD D

L*I/I T | type | 1 I/I record scopeZl

7%|‘| V|var|3|/|imp0rt—|ﬁv
S e] =

——>|/| integer |type| 0 |/| — |<7(1)
f»|/| reall type | 0 I/I —

|l«<—0

type
T = record
F1 : integer;
F2 : real;
end;
var V : T;
module M;
export I; import V;
var I : integer;

function P1 (Al : real;
A2: integer) : real;

begin

end P1;

procedure P2 (A3 : real);

var I : integer;
begin

with V do é
end;

end P2;

end M;

Figure 3.19 LeBlanc-Cook symbol table for an example program in a language like Modula-2. The scope stack represents
the referencing environment of the with statement in procedure P2. For the sake of clarity, the many pointers from type fields

<<«

o the Symbgl tabfe entries for integer and Feal are shown as parenthesiz S an S, rather than ag arfows.
T > > . GO BACK [FuLL SCREEN
PL April 17, 2023

| |

CLOSE

| |

423 OF 778

| |

Symbol Table: Scope Stack

Scope rules

e In addition to the hash table a scope stack is maintained for resolving non-
local references.

e [he new scope number is pushed onto the scope stack when the compiler
enters a new scope and popped when exiting a scope.

e There could be unnamed scopes too (e.g. unnamed blocks with local dec-
larations, for-loops where the counting variable is local to the loop etc).

e Each (static) scope may be assigned a number in sequential order as it
Is encountered in the program text starting with 0 assigned for the global

scope.

e The scope number of a nested scope is always greater than that of its parent.

|

<< | > > > | . ’ Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 124 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

| |

8.

Runtime Structure

B

<<«

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

425 oF 778

Run-time Structure

It is ever so. One of the poets, whose name I cannot recall, has a passage, which I am unable
at the moment to remember, in one of his works, which for the time being has slipped my mind,

which hits off admirably this age-old situation.
P. G. Wodehouse, The Long Hole in The Golf Omnibus

|

<«

| > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 126 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

| |

Run-time Environment

Memory for running a program is divided up as follows
Code Segment. This is where the object code of the program resides

Run-time Stack. Required in a dynamic memory management technique.
Especially required in languages which support recursion. All data whose
sizes can be determined statically before loading is stored in an appropriate
stack-frame (activation record).

Heap. All data whose sizes are not determined statically and all data that is
generated at run-time is stored in the heap.

|

R l ’ < | ’ > l ’ >> PL April 17, 2023 0 AR | ’

A Calling Chain

Main program

Globals

Procedure P2
Locals of P2

Procedure P21
Locals of P21

Body of P21
Call P21

Body of P2
Call P21

Procedure P1
Locals of P1
Body of P1

Call P2

Main body
Call P1

Main — P1 — P2 — P21 — P21

|

<<

> >

| PL April 17, 2023 ’

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

428 OF 778

| |

Run-time Structure: 1

Main program

Globals

Procedure P2

Locals of P2

Procedure P21
Locals of P21

Body of P21

Body of P2

Procedure P1
Locals of P1

Body of P1

Main body

|

<«

]

Globals

Main

PL April 17, 2023 ’

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

429 OF 778

| |

Run-time Structure: 2

Main program

Globals

Procedure P2

Locals of P2

Procedure P21
Locals of P21

Body of P21

Body of P2

Procedure P1
Locals of P1

Body of P1

Return address to Main

Locals of P1
Static link to Main

Main body

Dynamic link to Main

, Formal par of P1

Globals

Main — P1

|

<<

| . ’ Go BAck
PL April 17, 2023

| |

FuLL SCREEN

| |

CLOSE

| |

430 oF 778

| |

Run-time Structure: 3

Main program

Globals

Procedure P2

Locals of P2

Procedure P21
Locals of P21

Body of P21

Body of P2

Procedure P1
Locals of P1

Body of P1

Return address to last of P1
Dynamic link to last P1

Locals of P2
Static link to last P1
Formal par P2

Main body

Return address to Main

Dynamic link to Main

Locals of P1
Static link to Main
Formal par of P1

Globals

Main — P1 — P2

|

<<

PL April 17, 2023 ’

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

431 oF 778

| |

Run-time Structure: 4

Main program

Globals

Procedure P2

Locals of P2

Procedure P21
Locals of P21

Body of P21 4

Body of P2

Return address to last of P2
Dynamic link to last P2

Locals of P21

Static link last P2

Formal par P21

Procedure P1
Locals of P1

Body of P1

.

Return address to last of P1
Dynamic link to last P1

Locals of P2

Static link to last P1

Formal par P2

Main body

Return address to Main
Dynamic link to Main

Locals of P1

Static link to Main

Formal par of P1

Globals

Main — P1 — P2 — P21

|

<<

H >>

PL April 17, 2023 ’

Go BAck | ’

| |

CLOSE

| |

432 OF 778

| |

Run-time Structure: 5

Return address to last of P21

Dynamic link to last P21
Locals of P21

Globals Static link to last P2
Formal par P21

Main program

Procedure P2 /

Return address to last of P2
Locals of P2 /

Dynamic link to last P2
Locals of P21
Static link last P2

Formal par P21

Procedure P21

Return address to last of P1
Dynamic link to last P1

Locals of P2

Body of P2 Static link to last P1

Formal par P2

Body of P21 4

Procedure P1 Return address to Main

Locals of P1 Dynamic link to Main
Locals of P1
Sy e b Static link to Main
Formal par of P1
Main body

Globals

Main — P1 — P2 — P21 — P21

Back to the Big Picture

<<

Go B | \ FuLL S
| ‘ >> PL April 17, 2023 0 Aok ULL DOREEN

| |

CLOSE

| |

433 OF 778

| |

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

434 OF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

435 OF 778

9. Abstract Syntax

Abstract Syntax Trees

The construction of ASTs from concrete parse trees is an example of a trans-

formation that can be performed using a syntax-directed definition that has no
side-effects.

Hence we define it using an attribute grammar.

Definition 9.1 An attribute grammar is a formal way to define semantic rules
and context-sensitive aspects of the language. Each production of the grammar
Is associated with a set of values or semantic rules. These values and semantic
rules are collectively referred to as attributes.

|

<< | > > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 136 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

Abstract Syntax: 0

E-SET|T

T —>T/F | F

F—n | (F)
Suppose we want to evaluate an expression (4 — 1)/2. What we actually
want is a tree that looks like this:

|

Evaluation: O

|

<<

> >

Go B
PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

438 OF 778

| |

Evaluation: 1

~

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

439 oF 778

Evaluation: 2

|

<<

> >

Go B
PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

440 oF 778

| |

Evaluation: 3

|

<<

>>

Go B
PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

441 oF 778

Evaluation: 4

But what we actually get during parsing is a tree that looks like . ..

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE
PL April 17, 2023

Abstract Syntax: 1
... THIS! @

®
@/\@
®‘ 5 =
®
(®) ® o

Abstract Syntax

Shift-reduce parsing produces a concrete syntax tree from the rightmost deriva-
tion. The syntax tree is concrete in the sense that

e [t contains a lot of redundant symbols that are important or useful only
during the parsing stage.

— punctuation marks

— brackets of various kinds

e [t makes no distinction between operators, operands, and punctuation sym-
bols

On the other hand the abstract syntax tree (AST) contains no punctuations
and makes a clear distinction between an operand and an operator.

|

<< | > > > | . ’ Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 144 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

Abstract Syntax: Imperative Approach

We use attribute grammar rules to construct the abstract syntax tree (AST)
from the parse tree.

But in order to do that we first require two procedures for tree construction.

makeLeaf(literal) : Creates a node with label literal and returns a pointer
or a reference to it.

makeBinaryNode(opr, opdl, opd2): Creates a node with label opr
(with fields which point to opdl and opd2) and returns a pointer or a refer-
ence to the newly created node.

Now we may associate a synthesized attribute called ptr with each terminal
and nonterminal symbol which points to the root of the subtree created for it.

|

<< | ’ | | ’ > | ’ > > | . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 445 OF 778
PL April 17, 2023 o

Abstract Syntax Trees: Imperative

Ey — E1—T > Ey.ptr .= makeBinaryNode(—, Eq.ptr, T.ptr)
E =T > E.ptr =T .ptr

To — T1/F © Ty.ptr .= makeBinaryNode(/,T}.ptr, F.ptr)
T — F > T.ptr .= F.ptr

F — (E) > F.ptr:=FEptr

F —n > F.ptr .= makeLeaf(n.val)

The Big Picture

| 2 | ‘ . Go BAck | ‘ FuLL SCREEN | ‘
:H k] | ‘ D) | ‘ >> PL April 17, 2023

Abstract Syntax: Functional Approach

We use attribute grammar rules to construct the abstract syntax tree (AST)
functionally from the parse tree.

But in order to do that we first require two functions/constructors for tree
construction.

makeLeaf(literal) : Creates a node with label literal and returns the AST.

makeBinaryNode(opr, opdl, opd2): Creates a tree with root label
opr (with sub-trees opdl and opd2).

Now we may associate a synthesized attribute called ast with each terminal
and nonterminal symbol which points to the root of the subtree created for it.

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 447 OF 778
PL April 17, 2023 corn

Abstract Syntax: Functional

Ey — E1—T > Ey.ast := makeBinaryNode(—, Fy.ast, T.ast)
E =T > F.ast .= "T.ast

Ty — T1/F © Ty.ast .= makeBinaryNode(/,T].ast, F.ast)
T — F > T.ast .= F.ast

F — (E) 1 F.ast:= FE.ast

F —n > F.ast := makeLeaf(n.val)

The Big Picture

| 2 | ‘ . Go BAck | ‘ FuLL SCREEN | ‘
:H k] | ‘ D) | ‘ >> PL April 17, 2023

Abstract Syntax: Alternative Functional

In languages like SML which support algebraic (abstract) datatypes, the func-
tions makeLeaf(literal) and makeBinaryNode(opr, opdl, opd2)
may be replaced by the constructors of an appropriate recursively defined

datatype AST.

|

PL April 17, 2023

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

450 oF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

451 oF 778

10.

Syntax-Directed Translation

Syntax-directed Translation

|

<<

Go B | |
>> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

452 OF 778

Attributes

An attribute can represent anything we choose e.g.
® a string

e a number (e.g. size of an array or the number of formal parameters of a
function)

® a type

e a2 memory location

e a procedure to be executed

e an error message to be displayed

The value of an attribute at a parse-tree node is defined by the semantic rule
associated with the production used at that node.

|

<< < > > > | . ’ Go Back | ’ FULL SCREEN | ’ CLOSE | ’ A53 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

The Structure of a Compiler

Divide and conquer. A large-scale structure and organization of a compiler
or translator is defined by the structure of the parser in terms of the individual
productions of the context-free grammar that is used in parsing.

Syntax-directed definitions. The problem of context-sensitive and se-
mantic analysis is split up into the computation of individual attributes and
semantic rules in such a way that each production is associated with the
(partial) computation of one or more attributes.

Glue code. Finally it may require some “glue-code” to put together these
computations to obtain the final compiler/translator. The glue-code may
also be split into some that occurs in the beginning through global declara-
tions/definitions and some which need to be performed in the end.

|

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 154 OF 778

« | ’ b | ’ > | ’ > | PL April 17, 2023 ’

Syntax-Directed Definitions (SDD)

Syntax-Directed definitions are high-level specifications which specify the eval-
uation of

1. various attributes
2. various procedures such as

e transformations

e generating code

e saving information

® ISSUINg error messages

They hide various implementation details and free the compiler writer from

explicitly defining the order in which translation, transformations, and code
generation take place.

|

<< | ’ | | ’ > | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 155 OF 778

PL April 17, 2023

Kinds of Attributes

There are two kinds of attributes that one can envisage.

Synthesized attributes A synthesized attribute is one whose value de-
pends upon the values of its immediate children in the concrete parse tree.

A syntax-directed definition that uses only synthesized attributes is called
an S-attributed definition. See example

Inherited attributes An inherited attribute is one whose value depends
upon the values of the attributes of its parents or siblings in the parse tree.

Inherited attributes are convenient for expressing the dependence of a lan-
guage construct on the context in which it appears.

|

<< | > | ’ > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 156 OF 778
| ’ | ’ PL April 17, 2023 ’ !

What is Syntax-directed?

e A syntax-directed definition is a generalisation of a context-free grammar in
which each grammar symbol has an associated set of attributes, partitioned
into two subsets called synthesized and inherited attributes.

e [he various attributes are computed by so-called semantic rules associated
with each production of the grammar which allows the computation of the
various attributes.

e These semantic rules are in general executed during

bottom-up (SR) parsing at the stage when a reduction needs to be
performed by the given rule and

top-down (RDP) parsing in the procedure before the next call or re-
turn from the procedure. (see subsection 4.9)

e A parse tree showing the various attributes at each node is called an anno-

:| << | | > ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ A57 OF 778 | ’

Forms of SDDs

In a syntax-directed definition, each grammar production rule X — « has
associated with it a set of semantic rules of the form b = f(ay,...,a;) where
ai,--- ,a; are attributes belonging to X and/or the grammar symbols of «.

Definition 10.1 Given a production X — «, an attribute a is
synthesized: a synthesized attribute of X (denoted X.a) or

inherited: an inherited attribute of one of the grammar symbols of o (de-
noted B.a if a is an attribute of B).

In each case the attribute a is said to depend upon the attributes a1, --- ,a;..

|

<< | > | ’ > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 158 OF 778
| ’ | ’ PL April 17, 2023 ’ !

Attribute Grammars

e An attribute grammar is a syntax-directed definition in which the functions
in semantic rules can have no side-effects.

e The attribute grammar also specifies how the attributes are propagated
through the grammar, by using graph dependency between the produc-
tions.

e In general different occurrences of the same non-terminal symbol in each
production will be distinguished by appropriate subscripts when defining the
semantic rules associated with the rule.

The following example illustrates the concept of a syntax-directed definition
using synthesized attributes.

|

<< | > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 159 OF 778
| ’ | ’ PL April 17, 2023 ’ !

Attribute Grammars: Example
Ey — E1—T > Eg.val .= Ep.val —T.val
E — T > E.val = T.val
Ty — T1/F > Tywval = Ty.val/Foal
T — F > T.wal := Flval
F — (F) > Fuwal:= FE.wal

F —n > Foal .= n.val

Note: The attribute n.val is the value of the numeral n computed during

= “ﬁ”ﬁﬁeﬁ‘fﬁmﬂ %9—\ = w1 a0 o | [o o Il

Attributes: Basic Assumptions

e Terminal symbols do not have any children in the concrete parse tree. At-
tributes of terminals supplied by the lexical analyser during scanning are
assumed be synthesized. They could however have inherited attributes.

e The start symbol of the augmented grammar can have only synthesized
attributes.

e In the case of LR parsing with its special start symbol, the start symbol
cannot have any inherited attributes because

1. it does not have any parent nodes in the parse tree and
2. it does not occur on the right-hand side of any production.

|

R l ’ < | ’ > l ’ >> PL April 17, 2023 0 AR | ’

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

462 oF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

463 OF 778

10.1. Synthesized Attributes

Synthesized Attributes

Evaluating the expression (4 — 1)/2 generated by the grammar for subtraction
and division

|

<<« | ‘ < | ‘ > | ‘ > > . Go BAcK | ‘ FULL SCREEN | ‘ CLOSE | ‘ 464 oF 778
PL April 17, 2023

Synthesized Attributes: 0

ClOX0,
0000
®

B

<T
® ®
<< | ‘ | ‘ » | ‘ > > Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 465 OF 778 | ‘

PL April 17, 2023

Synthesized Attributes: 1

ClOX0, ?
0000
®

E
. Synthesized Attributes

B

<<«

PL April 17, 2023

466 OF 778

Synthesized Attributes: 2

ClOX0, ?
0000
®

E
. Synthesized Attributes

B

<<«

PL April 17, 2023

467 oF 778

Synthesized Attributes: 3

ClOX0,
0000
®

B

<<«

E
. Synthesized Attributes

Go B
| ‘ = | ‘ >> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

468 OF 778

Synthesized Attributes: 4

4| (E
. Synthesized Attributes
(

B

<<«

PL April 17, 2023

469 oF 778

Synthesized Attributes: 5

4| (E
. Synthesized Attributes
(

-]

B

<<«

PL April 17, 2023

470 oF 778

Synthesized Attributes: 6

B

<<«

Synthesized Attributes

[w]

-]

PL April 17, 2023

471 oF 778

Synthesized Attributes: 7

4| (E
. Synthesized Attributes
(

B

@
100 >
1@

N I Go®

PL April 17, 2023

472 OF 778

Synthesized Attributes: 8

Synthesized Attributes

.

? (4] (3] [2] [1]
[
™

B

<<«

Go B
| ‘ = | ‘ >> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

473 OF 778

Synthesized Attributes: 9

ClOX0,
0000
®

ﬂ

E

ol Nl N\
©

()
N

Synthesized Attributes
[4] [3] [2] 4]

BN

[=]

B

<<«

» | ‘ > > i Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 474 OF 778 | ‘
| ‘ PL April 17, 2023

Synthesized Attributes: 10

ClOX0,
0000
®

e
. .

-

. Synthesized Attributes

)

i)

)

ol Nl N\
N

®
@

[]

[=]

B

<<«

» | ‘ > i Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 475 OF 778 | ‘
| ‘ PL April 17, 2023

Synthesized Attributes: 11

ClOX0,
0000
®

e
. .

-

. Synthesized Attributes

)

i)

)

ol Nl N\
N

®
@

[]

[=]

B

<<«

Go B | ‘ FuLL S | ‘
| ‘ > | ‘ >> PL April 17, 2023 0 Aok ULL DORERN

CLOSE

476 OF 778

Synthesized Attributes: 12

ClOX0,
0000
®

.

-

. Synthesized Attributes

)

i)

)

ol Nl N\
N

®
@

[]

[=]

B

<<«

Go B | ‘ FuLL S | ‘
| ‘ > | ‘ >> PL April 17, 2023 0 Aok ULL DORERN

CLOSE

477 OF 778

Synthesized Attributes: 13

ClOX0,
0000
®

Synthesized Attributes

®
oelaln

)

i) H

)

ol Nl N\
N

®
@

[]

[=]

B

<<«

Go B | |
| ‘ = | ‘ >> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

478 OF 778

Synthesized Attributes: 14

ClOX0,
0000
®

Synthesized Attributes

®
oelaln

)

i) H

)

ol Nl N\
N

®
@

[]

[=]

B

<<«

Go B | |
| ‘ = | ‘ >> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

479 OF 778

An Attribute Grammar

Ey — E1—T > Eywval .= sub(Ey.val, T.val)
E =T > F.val :=T.wal

Ty — T/F © Tywal .= div(Ti.val, Floal)
I — F > T.val .= Fval
F — (E) > Fuwal:= F.wal

F —n > Floal ;= n.val

|

<<

PL April 17, 2023

Synthesized Attributes Evaluation: Bottom-up
During bottom-up parsing synthesized attributes are evaluated as follows:

Bottom-up Parsers

1. Keep an attribute value stack along with the parsing stack.

2. Just before applying a reduction of the form Z — Y7 ...Y}. compute the
attribute values of Z from the attribute values of Y7,--- Y} and place
them in the same position on the attribute value stack corresponding to
the one where the symbol Z will appear on the parsing stack as a result

of the reduction.

|

« | ’ b | ’ > | ’ >> PL April 17, 2023 : | ’

Synthesized Attributes Evaluation: Top-down

During top-down parsing synthesized attributes are evaluated as follows:

Top-down Parsers In any production of the form Z — Y7 ... Y}, the parser
makes recursive calls to procedures corresponding to the symbols Y7 ...Y].
In each case the attributes of the non-terminal symbols Y7 ... Y} are com-
puted and returned to the procedure for Z. Compute the synthesized at-
tributes of Z from the attribute values returned from the recursive calls.

|

<< | > > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 182 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

483 OF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

484 OF 778

10.2. Inherited Attributes

Inherited Attributes: 0

(-style declarations generating int x. v, z.

D —TL T — int | float
L — LI |I I - x|y |z
®
f °

o
o
7 e
2000 |
ST L
e

|

| 2 | ‘ | . Go BAck | ‘ FuLL SCREEN
k] | ‘ D) | ‘ >> PL April 17, 2023

Inherited Attributes: 1

(-style declarations generating int x. v, z.

D — T 1L
L — LI |I

T — int | float
I - x|y |z
®
e
L e
olelolo
BheL i
®

|

<<

Go B | ‘ FuLL S
| ‘ >> | PL April 17, 2023 O DAOK || o ooReem

486 OF 778

Inherited Attributes: 2

(-style declarations generating int x. v, z.

D —TL T — int | float
L — LI |I I - x|y |z

=

olelolo
© O
@~

<<« | ‘ < | ‘ > | ‘ > > | . Go BAcK | ‘ FULL SCREEN | ‘ CLOSE | ‘ 487 OF 778 | ‘
PL April 17, 2023

Inherited Attributes: 3

(-style declarations generating int x. v, z.

D —TL T — int | float
L — LI |I I - x|y |z

|

<<« | ‘ < | ‘ > | ‘ > > | Go BAcK | ‘ FuLL SCREEN

488 OF 778

Inherited Attributes: 4

(-style declarations generating int x. v, z.

D —TL T — int | float
L — LI |I I - x|y |z

|

<<« | ‘ < | ‘ > | ‘ > > | Go BAcK | ‘ FuLL SCREEN

489 OF 778

Inherited Attributes: 5

(-style declarations generating int x. v, z.

D —TL T — int | float
L — LI |I I - x|y |z

|

<<« | ‘ < | ‘ > | ‘ > > | Go BAcK | ‘ FuLL SCREEN

490 oF 778

Inherited Attributes: 6

(-style declarations generating int x. v, z.

D —TL T — int | float
L — LI |I I - x|y |z

|

b | ‘ J | ‘ > | ‘ 4 | . Go BAck | ‘ F S
PL April 17, 2023 L =C AR | | FOLR SCRERN

491 oF 778

Inherited Attributes: 7

(-style declarations generating int x. v, z.

D —TL T — int | float
L — LI |I I - x|y |z

|

b | ‘ J | ‘ > | ‘ 4 | . Go BAck | ‘ F S
PL April 17, 2023 L =C AR | | FOLR SCRERN

492 oF 778

Attribute Grammar: Inherited

D — TL > Lan =T type
T — int > T.type = int.int
T — float > T.type := float. float

Ly — Ly, I > Li:= Lgan

|

<<«

L — 1 > [.an = L.an
I —id > id.type .= l.in
= Gome] |

PL April 17, 2023

493 oF 778

L-attributed Definitions

Definition 10.2 A grammar is L-attributed if for each production of the form

Y — Xy...Xy, each inherited attribute of the symbol X;, 1 < 57 < k
depends only on

1. the inherited attributes of the symbol Y and

2. the synthesized or inherited attributes of X1,--- , X;_1.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Why L-attributedness? 1

Y = Xqi... X}
Intuitively, if X;.inh is an inherited attribute then

e it cannot depend on any synthesized attribute Y.syn of Y because it is
possible that the computation of Y.syn requires the value of X ;.inh leading
to circularity in the definition.

|

<< | > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 195 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

Why L-attributedness? 2

Y —- X1... X}
Intuitively, it X ;.inh is an inherited attribute then

o if the value of X;.inh depends upon the attributes of one or more of the
symbols X, 1,---, X}, then the computation of X;.inh cannot be per-
formed just before the reduction by the rule Y — X7 ... X} during parsing.
Instead it may have to be postponed till the end of parsing.

|

| ’ < | ’ | 4 | ’ > > . 0 BACK | ’
PL April 17, 2023

Why L-attributedness? 3

Y = Xqi... X}
Intuitively, if X;.inh is an inherited attribute then

e it could depend on the synthesized or inherited attributes of any of the
symbols X ... X;_j since they would already be available on the attribute
value stack.

|

<< | > > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 4197 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

Why L-attributedness? 4

Y — X1... X},
Intuitively, it X;.inh is an inherited attribute then

e it could depend upon the inherited attributes of Y because these inher-
ited attributes can be computed from the attributes of the symbols lying

below X on the stack, provided these inherited attributes of Y are also
| -attributed.

|

<< | > > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 198 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

A Non L-attributed Definition

Our attribute grammar for C-style declarations is definitely L-attributed. How-
ever consider the following grammar for declarations in Pascal and ML.

D — LT > Lan :="1T.type
T — int > T.type = int.int

T'" — real > T.type := real.real
Ly = L1.1 > Ly := Lg.an

L — 1 > [.an = L.an

I —id > id.type .= 1.in

In the first semantic rule the symbol L.in is inherited from a symbol to its
right viz. T.type and hence is not L-attributed.

|

| ’ | | ’ > | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 499 oF 778

Evaluating Non-L-attributed Definitions 1

In many languages like ML which allow higher order functions as values, a
definition not being L-attributed may not be of serious concern if the compiler
Is written in such a language.

But in most other languages it is serious enough to warrant changing the
grammar of the language so as to replace inherited attributes by corresponding
synthesized ones.

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 500 OF 778
PL April 17, 2023

Evaluating Non-L-attributed Definitions 2

The language of the grammar of Pascal and ML declarations can be generated
as follows (transforming the inherited attribute into a synthesised one).

D — idL > addtype(id, L.type)
L — T > L.an = 1T.type

Ly — id Ly > Lo.type == Lq.type:

addtype(id, Li.type)
' — int > T.type := int.int

T — real 1> T.type = real.real

Go B | \
| ‘ - | ’ < | ‘ >> PL April 17, 2023 0 AR

Dependency Graphs

In general, the attributes required to be computed during parsing could be syn-
thesized or inherited and further it is possible that some synthesized attributes
of some symbols may depend on the inherited attributes of some other sym-
bols. In such a scenario it is necessary to construct a dependency graph of the
attributes of each node of the parse tree and check that it is acyclic.

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 502 OF 778
PL April 17, 2023 ’ -

Dependency Graph Construction

Algorithm 10.1
ATTRIBUTEDEPENDENCYGRAPH
(T, 4) =

Requires: A parse tree T" and the list A of attributes
Yields: An attribute dependency graph
for each node n of T’
for each attribute a of node n
do .
{ do Create an attribute node n.a
for each node n of T’
for each semantic rule a :== f(by,..., b;)
do do {for i=1tok
\ do Create a directed edge b, — n.a

:| ’ << | ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN

CLOSE

| |

503 OF 778

| |

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

504 oF 778

| [

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

505 OF 778

| [

11.

Intermediate Representation

Intermediate Representation

<<

Go B | |
>> PL April 17, 2023 0 PAR

FuLL SCREEN

CLOSE

506 OF 778

| [

Intermediate Representation

Intermediate representations are important for reasons of portability i.e. plat-
form (hardware and OS) independence.

e (more or less) independent of specific features of the high-level language.
Example. Java byte-code which is the instruction set of the Java Virtual
Machine (JVM).

e (more or less) independent of specific features of any particular target
architecture (e.g. number of registers, memory size)
— number of registers
— memory size
—word length

Typical Instruction set

<< | ’ | | ’ | | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 507 OF 778

PL April 17, 2023

https://www.javatpoint.com/java-bytecode
https://www.javatpoint.com/java-bytecode
https://en.wikipedia.org/wiki/Java_bytecode
https://www.javatpoint.com/internal-details-of-jvm
https://www.javatpoint.com/internal-details-of-jvm
https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

IR Properties: Low vs high

. It is fairly low-level containing instructions common to all target architectures

and assembly languages.
How low can you stoop? ...

. It contains some fairly high-level instructions that are common to most high-

level programming languages.

How high can you rise?

. To ensure portability across architectures and OSs.

Portability

. To ensure type-safety

Type safety

Typical Instruction set

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 508 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

|

IR: Representation?

e No commitment to word boundaries or byte boundaries
e No commitment to representation of

—int vs. float,

— float vs. double,

— packed vs. unpacked,

— strings — where and how?.

<<«

Back to IR Properties

PL April 17, 2023

IR: How low can you stoop?

e most arithmetic and logical operations, load and store instructions etc.
e so as to be interpreted easily,

e the interpreter is fairly small,

e execution speeds are high,

e to have fixed length instructions (where each operand position has a specific
meaning).

Back to IR Properties

<<«

PL April 17, 2023

IR: How high can you rise?

e typed variables,

e temporary variables instead of registers.
e array-indexing,

e random access to record fields,

e parameter-passing,

e pointers and pointer management

e no limits on memory addresses

<<«

Back to IR Properties

L | | 4 [J 2 Go Bac
| ’ | ’ | ’ PL April 17, 2023 0 PACK

| |

FuLL SCREEN

| |

CLOSE

| |

511 oF 778

|

IR Properties: Portability

1. How low can you stoop? ...
2. How high can you rise?
3. To ensure portability across architectures and OSs.

e an unbounded number of variables and memory locations

e no commitment to Representational Issues

4. Type safety

Back to IR Properties

<<«

PL April 17, 2023

| |

512 OF 778

|

IR Properties: Type Safety

1. How low can you stoop? ...

2. How high can you rise?

3. Portability

4. To ensure type-safety despite the hardware instruction set architectures.

e Memory locations are also typed according to the data they may contain,

e No commitment is made regarding word boundaries, and the structure of
individual data items.

Back to IR Properties Typical Instruction set

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 513 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

A typical instruction set: 1

Three address code: A suite of instructions. Each instruction has at most 3
operands.

e an opcode representing an operation with at most 2 operands
e two operands on which the binary operation is performed
e a target operand, which accumulates the result of the (binary) operation.

If an operation requires less than 3 operands then one or more of the operands
Is made null.

<<«

PL April 17, 2023

A typical instruction set: 2

e Assignments (LOAD-STORE)

¢ Jumps (conditional and unconditional)
e Procedures and parameters

e Arrays and array-indexing

e Pointer Referencing and Dereferencing

<<

PL April 17, 2023

c.f. Java byte-code

515 OF 778

| [

https://en.wikipedia.org/wiki/Java_bytecode

A typical instruction set: 2.1
e Assignments (LOAD-STORE)

—x := y bop z, where bop is a binary operation
—X := uop Yy, Where uop is a unary operation
—x := vy, load, store, copy or register transfer

¢ Jumps (conditional and unconditional)
e Procedures and parameters
e Arrays and array-indexing

e Pointer Referencing and Dereferencing

<<

PL April 17, 2023

516 OF 778

| [

A typical instruction set: 2.2
o Assignments (LOAD-STORE)

e Jumps (conditional and unconditional)

—goto L — Unconditional jump,

—x relop y goto L — Conditional jump, where relop is a relational
operator

e Procedures and parameters
e Arrays and array-indexing

e Pointer Referencing and Dereferencing

<<

| | ‘ | | ‘ > > . Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 517 OF 778
| ‘ PL April 17, 2023

| [

A typical instruction set: 2.3
e Assignments (LOAD-STORE)

e Jumps (conditional and unconditional)
e Procedures and parameters

—call p n, where n is the number of parameters
—return vy, return value from a procedures call

—param x, parameter declaration
e Arrays and array-indexing

e Pointer Referencing and Dereferencing

<<

PL April 17, 2023

518 OF 778

| [

A typical instruction set: 2.4
o Assignments (LOAD-STORE)

e Jumps (conditional and unconditional)

e Procedures and parameters

e Arrays and array-indexing
—x := alil] - array indexing for r-value
—aljl := y — array indexing for [-value

Note: The two opcodes are different depending on whether [-value or 7-
value is desired. x and y are always simple variables

e Pointer Referencing and Dereferencing

| | ‘ | | ‘ > > . Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 519 oF 778
| ‘ PL April 17, 2023

A typical instruction set: 2.5
e Assignments (LOAD-STORE)
e Jumps (conditional and unconditional)
e Procedures and parameters
e Arrays and array-indexing

e Pointer Referencing and Dereferencing

—x := "y — referencing: set x to point to y

—x := *y — dereferencing: copy contents of location pointed to by y into
X

—*x := y — dereferencing: copy r-value of y into the location pointed to
by x

Picture

| | ‘ | | ‘ > > . Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 520 OF 778 |
| ‘ PL April 17, 2023

Pointers

X =%y

<<

> >

PL April 17, 2023 ‘

Go BAck

FuLL SCREEN

CLOSE

521 OF 778

| [

IR: Generation Basics

e Can be generated by recursive traversal of the abstract syntax tree.

e Can be generated by syntax-directed translation as follows:
For every non-terminal symbol N in the grammar of the source language
there exist two attributes
N.place, which denotes the address of a temporary variable where the
result of the execution of the generated code is stored
N.code, which is the actual code segment generated.

e In addition a global counter for the instructions generated is maintained as
part of the generation process.

e |t is independent of the source language but can express target machine
operations without committing to too much detail.

<<«

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 522 OF 778

IR: Infrastructure 1
Given an abstract syntax tree T, with T also denoting its root node.

T.place address of temporary variable where result of execution of the T is
stored.

newtemp returns a fresh variable name and also installs it in the symbol table
along with relevant information

T.code the actual sequence of instructions generated for the tree T.

newlabelreturns a [abel to mark an instruction in the generated code which
may be the target of a jump.

emit emits an instructions (regarded as a string).

<<«

| ’ | | ’ | | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 523 OF 778 |
PL April 17, 2023

IR: Infrastructure 2

Colour and font coding of IR code generation process.
e (Green: Nodes of the Abstract Syntax Tree

e Brown: Intermediate Representation i.e. the language of the “virtual
machine”

e [led: Variables and data structures of the language in which the IR code
generator Is written

e Blue: Names of relevant procedures used in IR code generation.
e Black: All other stuff.

<<«

PL April 17, 2023

IR: Expressions

E — 2d

E.place = id.place;
E.code = emit()

EQ — B — E»
Eg.place = newtemp;
Egy.code = Eq.code;

Eo.code:;

emit(Ey.place == Ej.place — Ey.place)

| ‘ > | ‘ > | PL April 17, 2023 ‘

The WHILE Language

Assume there is a language of expressions (with start symbol E') over which
the statements are defined. For simplicity assume these are the only constructs

of the language.

S —id:=F Assignment
S: S Sequencing
of E then S else S fi Conditional
while E do S od lteration

I — —— — | o] |
PL April 17, 2023

IR: Assignment and Sequencing

S —d = F >

S.code = E.code
emit(id.place:=FE .place)

S() — Sl; SQ >

So.begin = Si.begin;

So.after := Ss.after;

So-code = emit(Sy.begin:)
S1.code
So.code
emit(Sy.after:)

| ‘ > > | PL April 17, 2023 ‘ Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘

IR: Conditional

Sp.begin :
Sp.after :

Sp.code

of E then Sy else Sofe

newlabel:

So.a fter;

emit(Sy.begin:)

E .code;

emit(if E.place= 0 goto Ss.begin);
S1.code;

emit(goto Sp.after);

So.code;

emit(Sp.after:)

Go B | ‘ FuLL S | ‘
| PL April 17, 2023 ‘ OAOR | | U ORERR

Selective Evaluation.

Notice that the evaluation/execution of the Conditional is such that only one arm of the conditional is evaluated/executed
depending upon the truth value of the condition. This is perfectly consistent with the semantics of the conditional. It is
also consistent with the functional semantics of the conditional construct in FL(X). Similar remarks also apply to iteration

construct defined below.

|

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 529 OF 778
PL April 17, 2023 . :

| |

IR: lteration

Sp.begin
Sp-after :

Sp.code

while E do S7 od

newlabel;

newlabel;

emit(Sp.begin:)

E .code

emit(if F.place= 0 goto Spy.after);
S1.code;

emit(goto Sy.begin);
emit(Sy.after:)

|

Go B | |
| ‘ >> PL April 17, 2023 0 AR

IR: Generation End

While generating the intermediate representation, it is sometimes necessary
to generate jumps into code that has not been generated as yet (hence the
address of the label is unknown). This usually happens while processing

e forward jumps
e short-circuit evaluation of boolean expressions

It is usual in such circumstances to either fill up the empty label entries in a
second pass over the the code or through a process of backpatching (which is
the maintenance of lists of jumps to the same instruction number), wherein the
blank entries are filled in once the sequence number of the target instruction
becomes known.

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 531 OF 778
PL April 17, 2023

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

532 OF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

533 OF 778

12.

The Pure Untyped Lambda Calculus: Basics

The Pure Untyped Lambda calculus

Curiously a systematic notation for functions is lacking in ordi-
nary mathematics. The usual notation f(x)” does not distinguish
between the function itself and the value of this function for an un-
determined value of the argument.

Haskell B Curry Combinatory Logic vol 1

|

| ’ h | ’ > | ’ >> PL April 17, 2023 0 Aok | ’

12.1. Motivation for)\

Let us consider the nature of functions, higher-order functions (functionals) and the use of naming in mathe-
matics, through some examples.

Example 12.1 Let y = 2® be the squaring function on the reals. Here it is commonly understood that
x 1S the “independent” wvariable and y is the “dependent” wvariable when we look on it as plotting the
function f(x) = x° on the v — y axis.

Example 12.2 Often a function may be named and written as f(x) = =" to indicate that x is the
independent variable and n is understood (somehow!) to be some constant. Here f, x and n are all
names with different connotations. Similarly in the quadratic polynomial ax? 4 bx + ¢ it is somehow
understood that a, b and c denote constants and that x is the independent vartable. Implicitly by using
the names litke a, b and ¢ we are endeavouring to convey the impression that we consider the class
{az* +bx+c | a,b,c € R} of all quadratic polynomials of the given form.

Example 12.3 As another example, consider the uni-variate polynomial p(x) = x® + 2x + 3. Is this
polynomial the same as p(y) = y* + 2y + 32 Clearly they cannot be the same since the product p(z).p(y)
is a polynomial in two variables whereas p(x).p(x) yields a uni-variate polynomial of degree 4. However,

<<

| ’ b | ’ > | ’ >> | PL April 17, 2023 ’

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 535 OF 778

in the case of the function f in example 12.1 it does not matter whether we define the squaring function

as f(x) = 2% or as f(y) = y>.

Example 12.4 The squaring function 12.1 is a continuous and differentiable real-valued function (in
the variable x) and its derivative is f'(x) = 2x. Whether we regard [’ as the name of a new function or
we regard the ' as an operation on [which yields its derivative seems to make no difference.

Example 12.5 Referring again to the functions f(x) and f'(x) in example 12.4, it is commonly un-
derstood that f'(0) refers to the value of the derivative of f at 0 which is also the value the function f’
takes at 0. Now let us consider f'(x 4+ 1). Going by the commonly understood notion, since f'(x) = 2z,
we would have f'(x +1) =2(x +1). Then for x =0 we have f(x+1)= f(0+1) = f(1)=2x1=2.
We could also think of it as the function f'(g(0)) where g is the function defined by g(x) = x + 1, then
f'(g(0)) =2g(0) = 2 which yields the same result.

The examples above give us some idea of why there is no systematic notation for functions which distinguishes
between a function definition and the application of the same function to some argument. It simply did not
matter!

However, this ambiguity in mathematical notation could lead to differing interpretationas and results in the

<<

| > | ’ > > | . ’ Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 536 OF 778
| ’ | ’ PL April 17, 2023 ’

| L

context of mathematical theories involving higher-order functions (or “functionals” as they are often referred
to). One common higher order function is the derivative (the differentiation operation) and another is the
indefinite integral. Most mathematical texts emphasize the higher-order nature of a function by enclosing their
arguments in (square) brackets. Hence if O is a functional which transforms a function f(z) into a function
g(x), this fact is usually written O[f(z)] = g(z).

Example 12.6 Consider the functional E (on continuous real-valued functions of one real variable x)
defined as follows.

£(0) if t =0
if x #£0

The main question we ask now is “What does E|f(x + 1)] mean?”

It turns out that there are at least two ways of interpreting E[f(x + 1)] and unlike the case of example
12.5, the two interpretations actually yield different results!.

1. We may interpret E[f(x +1)] to mean that we first apply the transformation E to the function f(x)

<<

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 537 OF 778
| ’ | ’ | ’ PL April 17, 2023 > :

and then substitute x + 1 for x in the resulting expression. We then have the following.

E[f(z)]
B f'(0) if x =0
i ECET RS
B {0 if x =0
- lx ifz#0

Since Blf(z)] =z, E[f(x+1)] =z + 1.

2. Since f(z+1
the function

) =
h(x

f(g(x)) where g(x) = x+1, we may interpret E[f(x+1)] as applying the operator E to
) = Flg(w)). Hence Elf(z+1)] = Elh(w)] where h(z) = f(g(z)) = (o+17 = 2%+20-+1.

<<

> | ’ > > i Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 538 OF 778
PL April 17, 2023

Noting that h'(z) = 22+ 2, h(0) =1 and h'(0) = 2, we get

E[h(x)
h'(0) if x =0
= § h(z) — h(0) ifa 40
]2 xz’f:z;:()
B {az+2 if x #£ 0
= x4+ 2

The last example should clearly convince the reader that there is a need to disambiguate between a function
definition and its application.

12.2. The M-notation

In function definitions the independent variables are “bound” by a A which acts as a pre-declaration of the
name that is going to be used in the expression that defines a function.

The notation f(x), which is interpreted to refer to “the value of function f at x”, will be replaced by (f x) to

<<

| ’ | | ’ > | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 539 OF 778

| L

denote an application of a function f to the (known or unknown) value x.

In our notation of the untyped applied A-calculus the functions and their applications in the examples in
subsection 12.1 would be rewritten as follows.

Squaring . A x[z?] is the squaring function.

Example 12.2 . q Y xabe xlax® + bx + c] refers to any quadratic polynomial with coefficients unknown or

symbolic. To obtain a particular member of this family such as 122 + 2z + 3, one would have to evaluate
(((g 1) 2) 3) which would yield A z[1x* + 2z + 3].

Example 12.3 . p LAY x[r? + 22 + 3]. Then p(z) would be written as (p x) i.e. as the function p applied
to the argument x to yield the expression x° + 2z + 3. Likewise p(y) would be (p y) which would yield
y? + 2y + 3. The products (p).(p x) and (p x).(p y) are indeed different and distinct.

Example 12.5 Let us denote the operation of obtaining the derivative of a real-valued function f of one

d

independent variable x by the simple symbol D (instead of the more confusing d—) Then for any function
x

f, (D f) would yield the derivative. In particular (D X z[z?]) = A z[2z] and the value of the derivative at
0 would be obtained by the application (A z[2x] 0) which would yield 0. Likewise the value of the derivative

<<

| > | ’ > > | . ’ Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 540 OF 778
| ’ | ’ PL April 17, 2023 ’

| L

at + 1 would be expressed as the application (A z[2z] (x 4+ 1)). Thus for any function f the value of its
derivative at o + 1 is simply the application (D f) (z +1)).

The function g(z) = = + 1 would be defined as ¢ LD zlx + 1] and (g) = x + 1. Thus the alternative
definition of the derivative of f at x + 1 is simply the application ((D f) (g z)).

Example 12.6 The two interpretations of the expression E|f(x + 1)] are respectively the following.
L. ((E f) (x+1)) and
2. (E h) x) where h £ X\ z[(f (g 2))]

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 541 OF 778
PL April 17, 2023 ? :

Pure Untyped A-Calculus: Syntax

The language A of pure untyped A\-terms is the smallest set of terms built up
from an infinite set V' of variables and closed under the following productions

x|L] Abstraction

LM, N = Variable
L M) Application

where . € V.

e A Variable denotes a possible binding in the external environment.
e An Abstraction denotes a function which takes a formal parameter.

e An Application denotes the application of a function to an actual parameter.

|

< > >»> | . Go BACK | ’ FULL SCREEN | ’ CLOSE | ’ 542 oF 778 | ’
| ’ | ’ | ’ PL April 17, 2023 5 77

The language A

e The language A is “pure” (as opposed to being “applied”) in the sense
that it is minimal and symbolic and does not involve any operators other
abstraction and application.

e When used in the context of some algebraic system (e.g. the algebra of
integers or reals) it becomes applied. Hence the example of using the \-
notation in the differential calculus is one of an applied A-calculus.

e |t is purely symbolic and no types have been specified which put restrictions
on the use of variables in contexts. We will look at typing much later.

|

<< | > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 543 OF 778
| ’ | ’ PL April 17, 2023 ’ !

Free Variables

Definition 12.7 For any term N € A the set of free variables and the set
of all variables are defined by induction on the structure of terms.

N FV(N) Var(N)

7 {7} {7}

Ae|L] |FV(L)—{x} Var(L)U{x}

(L M) FV(L)UFV (M) Var(L)UVar(M)

Bound Variables
e The set of bound variables BV (N) = Var(N) — FV(N).

e [he same variable name may be used with different bindings in a single term
(eg- (Azlz] Az(z y)]))
e The brackets “" and “|" delimit the scope of the bound variable z in the

term A\x|L].

e The usual rules of static scope apply to A-terms.

|

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

Closed Terms and Combinators
Definition 12.8

o Ay C A is the set of closed \-terms (i.e. terms with no free variables).

e A)\ abstraction with no free variables is called a combinator?.

The A-terms corresponding to D (section 12.2) and E (section 12.2) must be
combinators too.

“Combinators represent function definitions

|

<< | > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 546 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

Notational Conventions

To minimize use of brackets and parentheses unambiguously

1. Axqxg...xm|L| denotes Axq|Axo|... A\xyy|L]---]| i.e. L is the scope of
each of the variables 1,29, ... 2.

2.(Ly Ly -+ Ly,) denotes (---(Ly Lo) ---L;,) i.e. application is left-
associative.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Substitution

Definition 12.9 For any terms L, M and N and any variable x, the substi-
tution of the term N for a variable x is defined as follows:

{N/z}x = N

{N/z}y =Y ify % «x

{N/z}\z|L] = \z[L]

{N/x} y[L] = Ay[{N/z}L] ifyZxandy & FV(N)
{N/x} y|L] = Mz{N/x}{{z/y}L] ify#x andy € FV(N) and

2 Is 'fresh’

WN/ey (L M) = ANy L AN/x;M)

Lemma 12.10 /f L and N are pure A-terms and x is a variable symbol then
{N/x}L is a pure \-term.

PTOOf.’ By induction on the structure of the A-term L. QED

:H << | ’ | | ’ > | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’

Notes on Substitution

e In the above definition it is necessary to ensure that the free variables of NV
continue to remain free after substitution i.e. none of the free variables of
N should be “captured” as a result of the substitution.

e The phrase "z is 'fresh’ " may be taken to mean z & FV(N)U Var(L).
e /\\ is closed under the syntactic operation of substitution.

e Substitution is the only operation required for function application in the
pure A-calculus.

|

<<

PL April 17, 2023

Compatibility

Definition 12.11 A binary relation p C A X A is said to be compatible if
L p M implies

1. for all variables x, \x|L| p Ax|M| and
2. for all terms N, (L. N) p (M N)and (N L)p (N M).

|

| ’ | | ’ > | ’ > > . Go BAcK | ’ FuLL SCREEN | ’
PL April 17, 2023

Compatible Closure

Definition 12.12 The compatible closure of a relation p C A X A is the
smallest (under the C ordering) relation p© C A x A such that

Lp M L p¢ M
P T ot M PABS T ot A M
L p¢ M L p¢ M
PAPPL 1Ny e vy PAPPR N e (v)

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

Compatible Closure: Properties

Lemma 12.13
1.p" 2 p.

2. The compatible closure of any relation is compatible.

3. If p is compatible then p© = p.
Example 12.14
1. =, is a compatible relation

2. %é is by definition a compatible relation.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

a-equivalence

Definition 12.15 (a-equivalence) =,C A x A is the compatible closure
of the relation {(\x|L| =o \y{y/x}L)) | vy & FV(L)}.

e a-equivalence implies that the the name(s) of the bound (called “indepen-
dent” in normal mathematics) variable(s) in a function definition is unim-
portant”. Hence \z[z?] =4 My[y?]".

e As long as distinct bound variable names do not clash within the same or
nested scopes (where they need to be kept visible)“ one can substitute the

other.

e Condition y & F'V (L) is necessary to ensure that a “free” ¥ is not captured
by the new “bound” variable .

%t corresponds exactly to uniformly replacing a variable name in a local context in a program by another variable name throughout the block

provided there is no clash of variable names.

bSee also ?7?
“Whenever they need to be 'collapsed’ e.g. when we need the value of f(z,x) as an instance of a function f(z,y), we need to explicitly apply f

to the argument pair (z, z).

|

<< | ’ | | ’ > | ’ > > . ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 553 OF 778
PL April 17, 2023

| |

Function application: Basic S-Reduction

Definition 12.16
o Any (sub-)term of the form (Ax|L| M) is called a [5-redex

e Basic [5-reduction is the relation on A\

e L (L) M), {M/2}L) | L= L L', LM € A}

e |t is usually represented by the axiom

(Az|L] M) =g {M [z} L

where L =,, L.

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

Function application: 1-step 3-Reduction

Definition 12.17 A 1I-step 3-reduction %b is the smallest relation (under the
C ordering) on A such that

L—gM AL L—%M
b1 L—j M F1Abs Az[L] —§ Ax[M]
. L%%M AooR L—%M
P1APP (L N)—L (M N) b1APP (N L) =% (N M)

o %é is the compatible closure of basic S-reduction to all contexts.

e We will often omit the superscript ! as understood.

|

| ’ | | ’ > | ’ > > | PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

Untyped A-Calculus: (5-Reduction

Definition 12.18

e for all integers n > 0, n-step [-reduction —>g is defined by induction on
1-step (3-reduction

. L= M= N
fnInduction 7 _)gb Ty (m > 0)
e B-reduction %E is the reflexive-transitive closure of 1-step (B-reduction.

That is,

SnBasis

0
L_>6L

L%%M
5

| ’ b | ’ > | ’ >> | PL April 17, 2023 ’

Computations and Normal Forms

e Loosely speaking, by a normal form we mean a term that cannot be “sim-
plified” further. In some sense it is like a “final answer” .

e We use [-reduction as the only way to “compute” final answers by simpli-
fication.

e There may be more than one 3-redex in a term — this may lead to different
ways of computing the final answer.

Main Question: Do all the different ways of computing yield the same
answer’

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 557 OF 778
PL April 17, 2023

Function Calls

Let
f=Ax[z? + 1]
9= Ay3.y + 2]
Consider two different evaluations of the function call (f (g 4))

Call-by-value, Call-by-name/text

(f (g 4)) (f (g 4))
= (f (34+2) |= (g4 +1

= (f 14) = (3.4+2)°+1
= (12+2)? +1

= 142 +1 — 14% +1

— 196 + 1 — 196 + 1

= 197 = 197

| ’ b | ’ > | ’ >> PL April 17, 2023 ’

Function Composition

o Let F = 22+ 1 be an expression involving one independent variable = and
let f e x| F|

e Let G = 3.y + 2 be an expression involving one independent variable y and

df

let g = M\y|G].

olet h = Af|Ag[Az|(f (g 2))]. Then h is the composition of f and g i.e.
h=(fogy)

The function call (f (g a)) for some value a is (h a) which is exactly ((f 0 g) a).

Hence There are at least two different ways of evaluating the composition of
functions.

|

B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

Evaluating Function Composition

Call-by-value.

1. First evaluate (g a) = {a/y}G yielding a value b.
2. Then evaluate (f b) = {b/x}F yielding a value c.

Call-by-text.

1. First evaluate (f (g y)) = {(g y)/x}F = {G/x} F yielding expres-
ston H which contains only y as independent variable. This expres-

sion represents a function h e Ay|H].
2. Bvaluate (h a) = {a/y}H yielding a value d.

Main Question: Is ¢ = d always?

|

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

Untyped A-Calculus: Normalization
Definition 12.19
o A term is called a 3-normal form (3-nf) if it has no [3-redexes.
o A term is weakly normalising (6-WN) if it can reduce to a 3-normal form.
o A term L is strongly normalising (5-SN) if it has no infinite reduction se-
quence L %é Lq %k Lo %é ce

Intuitively speaking a S-normal form is one that cannot be “reduced” further.

|

l ’ h | ’ > l ’ >> PL April 17, 2023 0 AR | ’

Some Combinators

Example 12.20

NESY: y|x| a projection function.

214 Ax|x|, the identity function.

35%)\, y z|((x z) (y 2))], a generalized composition function

40 % \il(x 2)

are all 5-nfs.

|

< > > Go B | ’
| ’ | ’ | ’ PL April 17, 2023 0 AR

Examples of Strong Normalization
Example 12.21

1. (K w) w) is strongly normalising because it reduces to the normal form
w in two B-reduction steps.

(K w) w) =5 Mylw] w) =pw
2. Consider the term ((S K) K). [Its reduction sequences go as follows:

(S K) K) =5 A2[((K 2) (K 2))] =5 Az[z] =1

|

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

Unnormalized Terms

Example 12.22

d oo : ..
1.0) ¥ (w w) has no B-nf. Hence it is neither weakly nor strongly normalising.

2. (K (w w)) cannot reduce to any normal form because it has no finite re-
duction sequences. All its reductions are of the form

K (W w) =5 (K (w w) =5 (K (0 w)—p-

or at some point it could transform to

K (@ w) =5 Mo)] =5 Ayllw w)] =5
3. (K w) Q) is weakly normalising because it can reduce to the normal form

w but it is not strongly normalising because it also has an infinite reduction
sequence

|

((lK w) Q) —h (K w) Q) =k

<]

| X ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 564 OF 778 | ’
PL April 17, 2023

Parameter Passing Mechanisms

o Call-by-name/text defines a Leftmost-outermost-computation, i.e. the
leftmost-outermost 3-redex is chosen for application.

o Call-by-value defines a Leftmost-innermost-computation, i.e. the
leftmost-innermost (3-redex is chosen for application.

To study these computation rules with regard to computing -normal forms
we consider the following examples.

Example 12.23 [et
o L %lﬁ P —/g yield a normal form P in [steps of [5-reduction,

o M %g‘ (Q —¥g yield a normal form () in m steps and
o N %% R —¥ yield a normal form R in n steps

|

| > > > | . ’ Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 565 OF 778
| ’ | ’ | ’ PL April 17, 2023 2 !

Deterministic Computation Mechanisms: K

Example 12.24 For the term ((K L) €2) we have the following reduction
sequences.

Call-by-name /text. Choose the leftmost-outermost B-redex

o (K L) Q) =5 (\[L] Q=5 L= P

Call-by-value. Choose the leftmost-innermost [5-redex
o (K L) Q) =4 (K P) Q) —=§ (M\y[P] Q) =% (M\y[P] Q) =% -

Here Call-by-value fails to produce the normal form even when it exists.

|

GGGGGG

Deterministic Computation Mechanisms: S

Example 12.25 For the term (((S L) M) N) we have the following reduc-
tion sequences if (P R) (Q) R)) isin 3 normal form.

Call-by-name /text. Choose the leftmost-outermost B-redex
o((S L) M) N) =3 (L N) (M N)) =L (P N) (M N)) =1
(P R) (M N) = (P R) (Q N)=05((P R) (@ R)
Call-by-value. Choose the leftmost-innermost [5-redex
o(((S L) M) N) =L (S P) M) N) =7 (S P) Q) N) =
(S P) Q) R) =3 ((P R) (Q R))

Call-by-value takes fewer steps to reduce to the normal form because there is
no duplication of the argument N .

|

Go B | ’
| ’ - | ’ < | ’ >> | PL April 17, 2023 0 AR

Contrariwise

Example 12.26 However consider the term (K L) M).
Call-by-name /text. In [+ 2 steps we get the normal form.

(K L) M)—=j (\y[L] M) =y L—=hP

Call-by-value. We get the normal form in [+m + 2 steps.
(K L) M) =4 (K P) M) =% (K P) Q) =5 \[P] Q) =/

B 3 B
L—>15P

Here Call-by-value takes an extra m steps reducing an argument M that
has no influence on the computation!

|

Go B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

Some Morals, Some Practice
In general,

e Call-by-value (example 12.24) may fail to terminate even if there is a possi-
bility of termination.

o [f Call-by-value terminates, then Call-by-name will also terminate. More
precisely, if a normal form exists then Call-by-name will definitely find it.

e However, Call-by-value when it does terminate may terminate faster (ex-
ample 12.25) than Call-by-name/text provided all arguments need to be
evaluated in both cases.

e |t is also easier to implement Call-by-value rather than Call-by-name under
static scope rules in the presence of non-local references.

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 569 OF 778
PL April 17, 2023 ? -

B-nf: Characterisation
The following theorem is easy to prove.
Theorem 12.27 The class 5-nf C A is the smallest class such that
oV C (B-nfi.e. all variables are in 3-nf,
o ifLy,..., Ly € B-nfthen for any variable x, (x Ly ... Ly,) € B-nf and
o if . € B-nf then \x|L] € B-nf.

|

B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

571 OF 778

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

572 OF 778

| [

13.

Notions of Reduction

Notions of Reduction

<<

Go B
>> PL April 17, 2023 0 PAR

FuLL SCREEN

CLOSE

573 OF 778

| [

Reduction

For any function such as p = \z[3.2.20 + 4.2 + 1],
(p 2)=322442+1=21

However there is something asymmetric about the identity,

e While (p 2) deterministically produces 3.2.2 4+ 4.2 4+ 1 which in turn

e simplifies deterministically to 21,

B | ’
| ’ D | ’ i | ’ > PL April 17, 2023 °

Reduction Induced Equality

e It is not possible to deterministically infer that 21 came from (p 2). It
would be more accurate to refer to this sequence as a reduction sequence
and capture the asymmetry as follows:

(p 2) ~»322+4241~21

e And yet they are behaviourally equivalent and mutually substitutable in all
contexts (referentially transparent).

<<«

PL April 17, 2023

Reduction Vs. Equality

1. Reduction (specifically S-reduction) captures this asymmetry.

2. Since reduction produces behaviourally equal terms we have the following
notion of equality.

<<«

PL April 17, 2023

Untyped A-Calculus: (-Equality

Definition 13.1 3-equality or [(3-conversion (denoted =3) is the smallest
equivalence relation containing (-reduction (- —>;).

The following are equivalent definitions.

1. =g is the reflexive-symmetric-transitive closure of 1-step [-reduction.

2. =p is the smallest relation defined by the following rules.

L—%M _ . Reflexivit
L =5 M =3 Reflexivity L=4L
B L=g M Li=g M, M =5 N
=3 Symmetry M =5 L =3 Transitivity L=3 N

=3 Basis

| ’ | | ’ | | ’ > > | Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’

PL April 17, 2023

Compatibility of Beta-reduction and Beta-Equality

Theorem 13.2 5-reduction %; and (-equality =g are both compatible rela-
tions.

[]

Lemma 13.3 (Substitution lemma). [/f L %; M (resp. L =g M)
then

1L.x ¢ FV(L) impliesx & FV (M),
2{N/z}L —>; {N/x}M (resp. {N/x}L =g {N/x}M),
3.{L/z}N %2 {M/x}N (resp. {L/x}N =g {M/x}N)

Proof of theorem 13.2

Proof: (—3) Assume L —% M. By definition of J-reduction L —} M for some n > 0. The proof proceeds by induction on n

Basis. n = 0. Then L = M and there is nothing to prove.
Induction Hypothesis (/H).

The proof holds for all k, 0 < k < m for some m > 0.

Induction Step. For n =m + 1, let L = Lo —p" Ly, —>é M. Then by the induction hypothesis and the compatibility of _>}5 we have

By definition of —}
forall z € V, Az[L] =F A\z[L,], Az[Lp] = Ax[M] Az[L] =5 Ax[M],
forall N €A, (L N)=% (Ly N), (Lm N)=L(M N)|(L N)=%(M N)
forall N A, (N L) =7 (N L), (N Ly) =L (N M)|(N L)=%(N M)

(=5) Assume L =5 M. We proceed by induction on the length of the proof of L =5 M using the definition of S-equality.

Basis. n = 1. Then either L = M or L —7 M. The case of reflexivity is trivial and the case of L —% M follows from the previous proof.

Induction Hypothesis ([H).

End (—})

Il

<< | ’ < | ’ > | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE

PL April 17, 2023

| |

579 OF 778

| |

For all terms L and M, such that the proof of L =g M requires less than n steps for n > 1, the compatibility result holds.

Induction Step. Suppose the proof requires n steps and the last step is obtained by use of either =5 Symmetry or =5 Transitivity on some
previous steps.

Case (=5 Symmetry). Then the (n — 1)-st step proved M =g L. By the induction hypothesis and then by applying =g Symmetry to each
case we get
By =5 Symmetry
for all variables x, A\x[M| = \z[L] Ax[L] =p A\x[M]
for all terms NV, (M N)=3(L N)|(L N)=(M N)
for all terms N, (N M)=5(N L)| (N M)=5(N L)

Case (=p Transitivity). Suppose L =3 M was inferred in the n-th step from two previous steps which proved L =5 P and P =3 M for some
term P. Then again by induction hypothesis and then applying =5 Transitivity we get

By = Transitivity

for all variables =, Ax[L]| =g \z[P], Az [P] =5 \x[M] Ax[L] =5 \x[M]
for all terms NV, (L N)=3(P N), (P N)=3(M N)|(L N)=3(M N)
for all terms NV, (N L)y=s(N P), (N P)=3(N M) | (N L)=5(N P)
End (:5)
QED
<<« | ’ < | ’ > | ’ > Go Back | ’ FULL SCREEN | ’ CLOSE | ’ 580 OF 778

PL April 17, 2023

Eta reduction

Given any term M and a variable x &€ F'V(M), the syntax allows us to
construct the term Ax|[(M x)| such that for every term N we have

(Az[(M z)] N)—p (M N)

In other words,

(Az|(M x)] N)=(M N) for all terms N

We say that the two terms Ax|(M)| and M are extensionally equivalent
l.e. they are syntactically distinct but there is no way to distinguish between
their behaviours.

So we define basic n-reduction as the relation

Az|(L x)] —y L provided z & F'V(L) (7)

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Eta-Reduction and Eta-Equality

The following notions are then defined similar to the corresponding notions for

S-reduction.

1
Ul

e — is defined by induction on 1-step 7-reduction

e 1-reduction —

e 1-step 7)-reduction — is the closure of basic n-reduction to all contexts,

*

U
e the notions of strong and weak 7 normal forms n-nf.

is the reflexive-transitive closure of 1-step n-reduction.

e the notion of 7j-equality or 7)-conversion denoted by =,,.

<<«

| ‘ | | ‘ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ‘ CLOSE | ‘ 582 OF 778

|

The Paradoxical Combinator

Example 13.4 Consider Curry’s paradozical combinator

YAFI(C)] where CEa[(f (¢ o))

For any term L we have

(Yc L) =5 (Mal(L (x @) A[(L (2 @)
=a WYL (y y))| Az[(L (z x))])
5 (L Qal(L (z)] Ma[(L (x @)

=g (L (Yc L))

Hence (Yc L)=pg (L (Yc L)). However (L (Yc L)) will never 3-reduce
to (YC L).

d
I~

| ’ | | ’ | | ’ > > | PL April 17, 2023 ’ Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’

Exercise 13.1

1. Prove that n-reduction and n-equality are both compatible relations.
2. Prove that n-reduction s strongly normalising.

3. Define basic fn-reduction as the application of either (6) or (7). Now prove that —>%n, —%, and =g, are all compatible
relations.

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 584 OF 778

|

13.1. Recursion and the Y combinator

Since the lambda calculus only has variables and expressions and there is no place for names themselves (we use names such
as K and S for our convenience in discourse, but the language itself allows only (untyped) variables and is meant to define
functions anonymously as expressions in the language). In such a situation, recursion poses a problem in the language.

Recursion in most programming languages requires the use of an identifier which names an expression that contains a call to
the very name of the function that it is supposed to define. This is at variance with the aim of the lambda calculus wherein
the only names belong to variables and even functions may be defined anonymously as mere expressions.

This notion of recursive definitions may be generalised to a system of mutually recursive definitions.

The name of a recursive function, acts as a place holder in the body of the definition (which in turn has the name acting as
a place holder for a copy of the body of the definition and so on ad infinitum). However no language can have sentences of
infinite length.

The combinator Y¢ helps in providing copies of any lambda term L whenever demanded in a more disciplined fashion.
This helps in the modelling of recursive definitions anonymously. What the Y¢ combinator provides is a mechanism for
recursion “unfolding” which is precisely our understanding of how recursion should work. Hence it is easy to see from

(YC L) =5 (L (YC L)) that

(Ye L) = (L (Yc L)) =3 (L (L (Yc L)) = (L (L (L (Yc L)) =5 (8)

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 585 OF 778

|

Many other researchers have defined other combinators which mimic the behaviour of the combinator Yc.

interest is Turing’s combinator Yt 4 (T T) where T LAV yl(y ((x x) y))]. Notice that

(T T)
= (Mylly ((z z) y)] T)
=5 Mylly (T T))]
= My (YT ¥))]

from which, by compatible closure, for any term L we get

(YT L)
= (T T) L)

5 (Wylly (Yr y)l L)
_>ﬁ (L (Yt L))

Thus Y7 is also a recursion unfolding combinator yielding

(Yr L) =5 (L (Y1 L) =g (L (L (Y1 L)) =5(L (L (L (Y7 L)) ="

Of particular

Go B
R | ‘ < | ’ > | ‘ >> PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

586 OF 778

| |

Recursion and The Fixed point theorem

Theorem 13.5 For every (untyped) \-term L, there exists a fixed point F'y
such that Fr, =g (L Fp).

P?“OOf.' Assume x and y are not free in L. Then

Hence F; =3 (L F]). QED
By abstracting out L we get a function that can generate fixed-points.

Corollary 13.6 Y is a fixed-point combinator which generates a fixed point

for every lambda term i.e (Y¢ L) H% Fy.

|

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’

| ’ b | ’ > | ’ >> | PL April 17, 2023 ’

14. Representing Data in the Untyped Lambda Calculus

The Boolean Constants

True £ Az Ay|x]] (True)
False £ Az[Aylyl] (False)
Negation
df
Not = A\z[((z False) True)] (not)
The Conditional
| ’ < | ‘ > | ‘ > PL April 17, 2023 Go Back | ‘ FULL SCREEN | ‘ CLOSE | ’ 588 OF 778 | |:

ite £ Mo yzl(ry z)

(ite)

<<

> >

Go B
PL April 17, 2023 0 Aok

| |

FuLL SCREEN

| |

CLOSE

| |

589 OF 778

| L

Exercise 14.1

1. Prove that
(Not True) =g, False (9)
(Not False) =g, True

2. Prove that

(te True L M) =3, L (11)
(Ite False L M) =5, M 12)
(13)

3. We know from Theorem 7.7 that the boolean constants and the conditional form a functionally
complete (adequate) set for propositional logic. Use the conditional combinator lte and the constant
combinators True and False to express the following boolean operators upto Bn-equivalence.

e Not. Verify that it is a-equivalent to (not).
e And: conjunction

e Or: disjunction

FuLL SCREEN | ’ CLOSE | ’

Go BAck

590 oF 778

b | ’ b | ’ > | ’ >> PL April 17, 2023 | ’

http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf#p329

e Xor: exclusive OR

4. Prove the de Morgan laws for the boolean combinators, using only Bn-reductions.

5. Does ((And K) 1) have a fn-normal form?

<<

Go B | | Fous | |
| ’ < | ’ | 4 | ’ > > PL April 17, 2023 0 BAck ULL SCREEN

CLOSE

| |

591 OF 778

| L

The Church Numerals There are many ways to represent the natural numbers as lambda expressions.
Here we present Church’s original encoding of the naturals in the A-calculus. We represent a natural n as a
combinator n.

D) f x[x] (numeral-0)
14 A ox|(f x)] (numeral-1)
n 1L NF2[(f (f" 2))] (numeral-n-+1)

where (/") denotes the n-fold application of f to x. That is, (/" =)= (f (f ... (fx)...)).

~"~
f applied 1 times

“Arithmagic”
For any function g and Church numeral n, (n g) S-reduces to Ax[(¢g")] which is the n-fold application of g.

<< | > | ’ > > | . ’ Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 592 OF 778
| ’ | ’ PL April 17, 2023 ’

| L

We follow the operators of Peano arithmetic and the postulates of first order arithmetic (as treated in any course
in first order logic) and obtain “magically”® the following combinators for the basic operations of arithmetic
and checking for 0.

IsZero L An[(n Ax[False] True)] (IsZero)
Succ L an f al((n) (f) (Succ)
Add L xmn fal((m f) (n f) (Add)
Mult £ Xm0 f((m (n f))] (Mult)
Pwr £ Xm n[(n m)| (Pwr)

The only way to convince oneself that the above are correct, is to verify that they do produce the expected
results.

6There are geniuses out there somewhere who manage to come up with these things. Don’t ask me how they thought of them!

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 593 OF 778 |

http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf
http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf

Exercise 14.2

1. The successor function may also be defined as Succ’ Y \n fx[(f (nf x)]. Show that the following
hold when Succ is replaced by Succ’

2. Prove the following.
(a) (Succ 0) =g, 1
(b) (Succ n) =g, n+1
(c) (IsZero 0) =g, True
(d) (IsZero (Succ n)) =g, False
(e) (Add 0 n) =g, n
(1) (Add m 0) =3, m
(g) (Add m n) =g, p where p denotes the combinator for p=m +n

3. Try to reduce (Add K'S) to its B-normal form. Can you interpret the resulting lambda term as
representing some meaningful function?

4. What identities should Mult and Pwr satisfy? Do they do indeed satisfy the inductive definitions of
multiplication and powering of natural numbers respectively. In particular, what is (Pwr 0 0)?

<<

| ’ | | ’ > | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 594 OF 778

Ordered Pairs and Tuples

Pair £ Az y pl(p 2 y) (14)
Fst £ Ap[(p True) (15)
Snd £ Ap|(p False)] (16)

We may define an n-tuple inductively as a pair consisting of the first element of the n-tuple and an n — 1 tuple
of the other n — 1 elements. Let (L, M) represent a pair. We then have for any n > 2

(L1, ..., Ly) = (Pair Ly (Lo, ..., L,))

Recursively defined data structures — Lists

Note the isomorphism between lists of length n and n-tuples for each n > 2 (ordered pairs are 2-tuples). We
use this facility to define lists of length n > 0 by first defining the empty list as being the same as False.

<<

| ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 595 OF 778
PL April 17, 2023

| L

Nil

List =
Hd =

Tl

= Az y[y]
Ah t[Pair h t]

Al[(I True)]
Al[(1 False)]

I IS [I%

<<

> >

Go B
PL April 17, 2023 0 Aok

CLOSE

| |

596 OF 778

| L

Exercise 14.3

1. Let P L (Pair L M). Verify that (Pair (Fst P) (Snd P)) =3, P.

2. Let Sfst £ (Fst S) and Ssnd £ (Snd S).

(a) Compute the pn normal form of (Pair Sfst Ssnd)? Is it Sn-equal to S?

(b) Now compute the 1 normal forms of (Fst (Pair Sfst Ssnd)) and (Snd (Pair Sfst Ssnd)). What are
their Bn normal forms?

(¢c) What can you conclude from the above?
3. For any k, 0 < k < n, define combinators which extract the k-th component of an n-tuple.
4.(a) Define a combinator Bintree that constructs binary trees from A-terms with node labels drawn from

the Church numerals.

(b) Define combinators Root, Lst and Rst which yield respectively the root, the left subtree and the
right subtree of a binary tree.

(¢c) Prove that for any such binary tree B expressed as a A-term, (Bintree (Root B) (Lst B) (Rst B)) =g,

<< | ’ | | ’ > | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 597 OF 778 |

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

598 OF 778

| [

15.

Confluence Definitions

Confluence: Definitions

<<

> Go B
PL April 17, 2023 0 PAR

FuLL SCREEN

CLOSE

599 oF 778

| [

Reduction Relations
Definition 15.1 For any binary relation p on A
1. pl is the compatible closure of p
2. pt is the transitive closure of p!
3. p* is the reflexive-transitive-closure of p' and is a preorder

4. ((pY) U (pH)™H* (denoted =,) is the reflexive-symmetric-transitive closure
of p! and is an equivalence relation.

5. = is also called the equivalence generated by p.

<<«

PL April 17, 2023

Reduction Relations: Arrow Notation

We will often use — (suitably decorated) in infix notation as a reduction

relation instead of p. Then
e —1 denotes the compatible closure of —,
e — 1 denotes the transitive closure of —,

e —™ denotes the reflexive-transitive closure of —, and

e 5 denotes the equivalence generated by —,

<< < > »»> Go Bac | ’ FuLL S | ’
| ’ | ’ | ’ PL April 17, 2023 0 PACK UL SCREEN

| |

601 oF 778

|

The Diamond Property

Definition 15.2 Let p be any relation on terms. p has the diamond prop-
erty if for all L, M, N,

| | « | | . | - - omes | |
PL April 17, 2023

The Diamond Property: Arrow Notation

We often use a decorated version of the symbol — for a reduction relation
and depict the diamond property as

M
VAN
L = d P
NS
N

<<«

PL April 17, 2023

Reduction Relations: Termination

Let — be a reduction relation, —™ the least preorder containing — and
< the least equivalence relation containing —*. Then

Definition 15.3 — /s terminating iff there is no infinite sequence of the
form
Loy — L1 — ---

Lemma 15.4 —, is a terminating reduction relation.

P?“OOf.‘ By induction on the structure of terms. QED

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 604 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

|

15.1. Why confluence?

We are mostly interested in [-reduction which is not guaranteed to terminate. We already know that there are several
terms which are only weakly normalising (S-WN). This means that there are several possible reduction sequences, some of
which may yield S-normal forms while the others may yield infinite computations. Hence in order to obtain normal forms
for such terms we need to schedule the g-reductions carefully to be guaranteed a normal form. The matter would be further
complicated if there are multiple unrelated normal forms.

Each p-reduction step may reveal fresh [-redexes. This in turn raises the disquieting possibility that each termination
sequence may yield a different S-normal form. If such is indeed the case, then it raises fundamental questions on the use of
p-reduction (or function application) as a notion of reduction. If S-reduction is to be considered fundamental to the notion
of computation then all S-reduction sequences that terminate in S-nfs must yield the same -nf upto a-equivalence.

Hence our interest in the notion of confluence. Since the issue of confluence of S-reduction is rather complicated we approach

it in terms of inductively easier notions such as local confluence, and semi-confluence which finally lead up to confluence and
the Church-Rosser property.

|

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 605 OF 778
PL April 17, 2023 ’ :

| |

Reduction: Local Confluence

Definition 15.5 — /s locally confluent if for all L, M, N,
N —L—M=3dP: N —"P"«— M

which we denote by

|

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

CCCCC

Reduction: Semi-confluence

Definition 15.6 — /s semi-confluent if for all ., M, N,
N—L—"M=39P: N —* P *«—— M

which we denote by

M
SN,
L =3 P
N, N
N

|

Reduction: Confluence
Definition 15.7 — is confluent if for all L, M, N,
N~ L —-*"M=39P: N —*P*«~— M

which we denote as

M
S N
L =4 P

N, S

N

Fact 15.8 Any confluent relation is also semi-confluent.

B
| ’ < | ’ > | ’ > PL April 17, 2023 ° | ’

Equivalence Characterization

Lemma 15.9
1. <= is the least equivalence containing —.
2. <— Is the least equivalence containing —™.

3L <~ M if and only if there exists a finite sequence L =
My, My,...M,, = M, m > 0 such that for each 1, 0 < 1 < m,
M; — M; 1 or M; .1 — M;. We represent this fact more succinctly as

L= My— /— M| — /+— -+ — [«— Myp=q M (21

<<

PL April 17, 2023

Proof of lemma 15.9
Proof:

1. Just prove that «<— is a subset of every equivalence that contains —s.
2. Use induction on the length of proofs to prove this part

3. For the last part it is easy to see that the existence of the “chain equation” (21) implies L <— M by transitivity. For the other part use
induction on the length of the proof.

QED

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 610 oF 778
PL April 17, 2023

| |

Reduction: The Church-Rosser Property (CRP)
Definition 15.10 — /s Church-Rosser if for all L., M,
L&y M=3P: L —*P*— M

which we denote by

*k

L —> M

Ne b
3P

To answer the main question we need to prove that [S-reduction is Church-
Rosser.

|

| ’ | | ’ > | ’ > > . Go BAck | ’
PL April 17, 2023

B-reduction and CRP
We already know that

e some terms may only be weakly normalising

e weakly normalising terms have both terminating and non-terminating com-
putations.

e But if the CRP holds then all terminating computations will yield the same
B-nf (upto =4).

|

<< | > > > . Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 612 OF 778
| ’ | ’ | ’ PL April 17, 2023 !

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

613 OF 778

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

614 oF 778

| [

15.2.

Confluence: Church-Rosser

The Church-Rosser Property

<<«

Go B | ’
>> PL April 17, 2023 0 PAR

FuLL SCREEN

| |

CLOSE

| |

615 OF 778

|

Confluence and Church-Rosser

Lemma 15.11 Every confluent relation is also semi-confluent

Theorem 15.12 The following statements are equivalent for any reduction
relation — .

1. — is Church-Rosser.

2. — |s confluent.

<<

Cl | ’ 616 of 778
PL April 17, 2023 ose °

| L

Proof of theorem 15.12

Proof: (1= 2) Assume — is Church-Rosser and let
N*%— L —"M
Clearly then N <~ M. If —» is Church-Rosser then
dP: N —*P*— M

which implies that it is confluent.

(2 = 1) Assume — is confluent and let L <~ M. We proceed by induction on the length of the chain (21).

L=,My— |/ +— M) —) ¢— - — [/ — M, =M

Basis. m = 0. This case is trivial since for any P, L —* P ift M —* P

Induction Hypothesis (/H).

The claim is true for all chains of length k, 0 < k < m.

Induction Step. Assume the chain is of length m = k + 1. i.e.

LEOC]\/[O—>/<_M1—>/<_..'—>/<—Mk—>/<—ﬂfk+1EaM

P « Go | [Foms ||
:H | ’ | ’ | 4 | ’ | d 2 PL April17, 2023 0 BAck ULL SCREEN

CLOSE

| |

617 oF 778

| |

Case My — M. Then by the induction hypothesis and semi-confluence we have

L — M,
N, b N\
30 M
N b
P

which proves the claim.

Case My <— M. Then the claim follows from the induction hypothesis and the following diagram

*

L +— M, +— M

N b

3P

QED

Lemma 15.13 If a terminating relation s locally confluent then it is semi-confluent.

Proof: Assume L — M and L —* N. We need to show that there exists P such that M/ —* P and N —* P. We prove this by induction on
the length of L —* N. If L =, N then P =, M, otherwise assume . — Ny — --- — N,, = N for some n > 0. By the local confluence we
have there exists P, such that M —* P. By successively applying the induction hypothesis we get terms P, ..., P, such that P;_; —* P; and
N; —* P; for each j, 1 < j < m. In effect we complete the following rectangle

L — N — Ny — -+« — N, =M
3)) e]
M — P — P — --- — P,
<<« | ‘ < | ‘ > | ’ 44 | Go Back | ’ FULL SCREEN | ‘ CLOSE | ‘ 618 oF 778

PL April 17, 2023

|

QED

From lemma 15.13 and theorem 15.12 we have the following theorem.

Theorem 15.14 If a terminating relation s locally confluent then it s confluent.

Proof:

— on A is given to be terminating and locally confluent. We need to show that it is confluent. That is for any L, we are given that

1. there is no infinite sequence of reductions of L, i.e. every maximal sequence of reductions of L is of length n for some n > 0.

2.
Ny %— L —' M, = 3P: M, —* P%— N, (22)

We need to show for any term L that
N%—L—"M=35: M —"S%— N (23)

Let L be any term. Consider the graph G(L) = (I'(L), —"') such that ['(L) = {M | L —* M}. Since — is a terminating reduction
Fact 15.15 The graph G(L) is acyclic for any term L.

If G(L) is not acyclic, there must be a cycle of length k& > 0 such that My —*! M; —*! ... —! My, —1 M, which implies there is also an
infinite reduction sequence of the form L —* My, —* M, —* ... which is impossible.

Since there are only a finite number of sub-terms of L that may be reduced under —, for each L there is a maximum number p > 0, which is the
length of the longest reduction sequence.

<< | ’ < | ’ > | ’ »>> PL April 17, 2023 Go Back | ’ FuLL SCREEN | ’ CLOSE | ’ 619 OF 778

Fact 15.16 For every M € I'(L),

1. G(M) is a sub-graph of G(L) and
2. For every M € I'(L) — {L}, the length of the longest reduction sequence of M is less than p.

Proof: We proceed by induction on p.

Basis. p = 0. Then I'(L) = {L} and there are no reductions possible, so it is trivially confluent.
Induction Hypothesis (/H).

For any L whose longest reduction sequence is of length k, 0 < k < p, property (23) holds.

Induction Step. Assume L is a term whose longest reduction sequence is of length p > 0. Also assume N %— L —* M i.e. Im,n > 0: N™%—
L —"™ M.
Case m = 0. If m =0 then M =, L and hence S =, N.
Case n =0. Then N =, L and we have S =, M.
Case m,n > 0. Then consider M; and N; such that

N%~— N %—L—'M —*M (24)

See figure (7). By (22), 3P : My —* P*— N,. Clearly M;, N;,P € I'(L) — {L}. Hence by fact 15.16, G(M;), G(N;1) and G(P) are all
sub-graphs of G(L) and all their reduction sequences are of length smaller than p. Hence by induction hypothesis, we get

P“— M —"M=3Q: M —*Q%— P (25)

Il

<< | ’ < | ’ > | ’ > > PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 620 OF 778

e NN, —"P=dR: P —"R%— N
But by (25) and (26) and the induction hypothesis we have

R“—P—"Q=35:Q —"S%“—R
Combining (27) with (24), (25) and (26) we get

N“—L —-3"M=45 M —*S«— N

Theorem 15.17 If a terminating relation is locally confluent then it is Church-Rosser.

Proof: Follows from theorem 15.14 and theorem 15.12

(28)

QED

QED

QED

<< | ‘ | | ’ > | ‘ > > PL April 17, 2023 Go BAcK | ‘ FuLL SCREEN | ‘ CLOSE

| |

621 OoF 778

| |

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

622 OF 778

| [

15.3.

The Church-Rosser Property

The Church-Rosser Property for 3-reduction

<<«

come | [rws
| ‘ < | ‘ > | ’ | d 4 PL Apr1/17, 2023 O BACK ULL SCREEN

| |

CLOSE

| |

623 OF 778

|

Parallel Beta Reduction

Definition 15.18 The parallel-5 or || reduction is the smallest relation for
which the following rules hold.

51 T
L HW? L
AL L HIIB L
151 ADsL AL

S
' el M) — g (M Ja}L/

PL April 17, 2023 | ’

Go BAck

Parallel Beta: The Diamond Property

Lemma 15.19
1 77/ 1 /
ZL—%ML%ﬁL—A;U.

3 Hﬁ g = —>; and is the smallest preorder containing —>|1‘ 5

4.1f L —L L' and M — . M’ then {M Jx} L —! . {M'/2} L/

|
b 16 16

P?“OOf.’ By induction on the structure of terms or by induction on the number of steps in any proof. QED

Theorem 15.20 —>‘1‘ 3 has the diamond property.

| | « | | > | L > - o ||
PL April 17, 2023

Proof of theorem 15.20

Proof: We need to prove for all L
1 1 : 1 pi

We prove this by induction on the structure of L and a case analysis of the rule applied in definition 15.18.

Case L=x€V.Then L=M =N = P.

Before dealing with the other inductive cases we dispose of some trivial sub-cases that arise in some or all of them.
Case L =, M. Choose P =, N to complete the diamond.
Case L =, N. Then choose P =, M.

Case M =, N. Then there is nothing to prove.

In the sequel we assume N #, L #, M #, N and proceed by induction on the structure of L.

Case L = \x[L;]. Then clearly M and N were both obtained in proofs whose last step was an application of rule ||/, Absl and so M = Az[M,]| and
N = \z[Ny] for some M; and N; respectively and hence N, ﬁ F Ly —>|1| 5 M. By the induction hypothesis we have

: 1 1
3P N1 — 5 P jg— M
Hence by choosing P = \z[P;] we obtain the required result.

Case L = (Ly L) and Ly is not an abstraction.

The rule ||, App is the only rule that must have been applicable in the last step of the proofs of N h g L —>h 5 M. Clearly then there exist M,
M,, Ny, Ny such that N, |1|5<— L, —>|1|5 M, and N, |1|5<— Lo —>h5 M,. Again by the induction hypothesis, we have

. 1 1
ElP] .N] —>Wg P] HQ(Ml

Il

<< | ‘ < | ‘ > | ‘ > > PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ‘ CLOSE | ‘ 626 OF 778

and
. 1 1
HPQ : Ny —)HIB P ||B(— M,

By choosing P = (P, F») we obtain the desired result.
Case L = (A\x[Ly] Ls).

Here we have four sub-cases depending upon whether each of M and N were obtained by an application of ||/5; App or |5 Abs2. Of these the sub-case
when both M and N were obtained by applying ||5; App is easy and similar to the previous case. That leaves us with three subscases.

Sub-case: Both M and N were obtained by applying rule || Abs2.
Then we have

{Ny/z}Ny = N i g— L= (A\z[Ly] Ly) —jj3 M = {My/z} M,
for some M;, My, Ny, Ny such that
Ny fjg— Ly — 5 M,
and
Ny jjg— Ly —jg My
By the induction hypothesis
P, : N, —>th P |1|[3<— M,
and
3Py : Ny —i5 Py jg— M,
and the last part of lemma 15.19 we have
AP ={Py/a}P,: N —j3 P jg— M

completing the proof.
Sub-case: M was obtained by applying rule ||, Abs2 and N by |51 App.

. ‘ Go Back | ‘ FULL SCREEN | ‘ CLOSE | ‘ 627 OF 778 | ‘
PL April 17, 2023

Then we have the form
(Az[N1] No) =N jjg— L= (Ax[Ly] Ly) —jg M = {My/x} M,
where again
Ny jig— Ly — 5 M,
and
Ny fjg— Lo —j5 My
By the induction hypothesis
3P : Ny —ig Py jg— M,
and
AP, : N, _>hﬁ P, |1|/3<— M,
and finally we have
AP ={P/z}P, : N —>|1|ﬁ P M— M
completing the proof.

Sub-case: M was obtained by applying rule ||y App and N by || Abs2.
Similar to the previous sub-case.

QED

| | ‘ | | ‘ > > . Go BAck | ‘ FuLL SCREEN | ‘ CLOSE | ‘ 628 OF 778 |
| ‘ PL April 17, 2023

Beta and Parallel Beta: Confluence

To show that H% Is Church-Rosser, it suffices to prove that it is confluent.
Theorem 15.21 Hhﬁ is confluent.

O
Corollary 15.22 %% is confluent.

PT’OOf,’ Since —, = _>|*!/3 by lemma 15.19 it follows from theorem 15.21 that —>é is confluent. QED

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 629 OF 778

|

Proof of theorem 15.21.

Proof: We need to show that for all L, M, N,

Nijg—L—M=3P:N—z Pjg0—M

We prove this by induction on the length of the sequences

and

L—% M, —>ﬁ6 M, —>ﬁ6 —>|1|B M, =M

1 1 1 1 _
L —g N =g No =g - =g Nu =N

where m,n > 0. More specifically we prove this by induction on the pairs of integers (j,7) bounded by (n,m), where (j,i) < (j',4') if and only if
either j < j" or (7 = j') and @ < 4’. The interesting cases are those where both m,n > 0. So we repeatedly apply theorem 15.20 to complete the

rectangle

L —>‘1|/8 M1
1841 1841
Ny —>h5 Py
1841 1831
1841 1841
Nn, —>1 Pnl

16

QED
< | | | | | | >

1 1 1 _
g M2~ —p Mn=M
X 1641 1 X 1641
—g P2 s — s Dim
1541 1641
X 1841 1) 1641
g P2 s —g Pm =P
[|
Go BACK | ’ FULL SCREEN | ‘ CLOSE | ‘ 630 OF 778

PL April 17, 2023

|

The Church-Rosser Property and (-nf
Corollary 15.23 H% is Church-Rosser.

P?”OOf.’ Follows from corollary 15.22 and theorem 15.12, QED

Corollary 15.24 If a term reduces to a 3-normal form then the normal form
is unique (upto =,).

PTOOf.’ If Ny %#— L —5 Ny and both N; N are [-nfs, then by the corollary 15.22 they must both be
B-reducible to a third element N3 which is impossible if both Ny and N are 5-nfs. Hence (-nfs are unique (upto

=,) whenever they exist. QED

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 631 OF 778
PL April 17, 2023

Finding 3-nf

The following shows that if a normal form exists, then there is a -reduction
sequence which will find it.

Corollary 15.25 If . =3 N € (3-nf then L %% N.

P’I“OOf.’ By the Church-Rosser property both L and N reduce to a common form M. But since N is in
normal form M =, N. QED

|

<< | ’ | | ’ > | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 632 OF 778

PL April 17, 2023

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

633 OF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

634 OF 778

An Applied Lambda-Calculus With Types

|

16. An Applied Lambda-Calculus
16.1. FL with recursion
<<

> | ‘ . Go BAcK | ‘ FuLL SCREEN
| ‘ D) | ‘ >> PL April 17, 2023

CLOSE

635 OF 778

16.2. Motivation and Organization
In the sequel we will define, by stages a simple higher order programming language.

Stage 0. A simple expression language to represent integers and booleans. Initially we define a representation for integers
and booleans purely symbolically (29) as a data type with constant constructors.

Stage 1. FLL(X) — a simple expression (functional programming) language with variables that allows expressions to be
defined on the two types of data — integers and booleans.

Static Semantics. By allowing more than one type of data we also show that there is a need for a type-checking
discipline since several meaningless constructs may be generated by the grammar. We specify the type-checking
(type-inferencing) system for this simple language as the static semantics of the language.

Functional Semantics. For the well-typed terms we also define the intended meanings of these expressions, by defining
a functional semantics.

Operational (Reduction) Semantics. We show that we can capture the intended meanings of well-typed expressions
by a dynamic semantics which specifies symbolically a notion of reduction (d-rules (51) to (60)).

Relating Functional and Operational Semantics. The integer values and boolean values are denoted symbolically
by o-normal forms. Lemma 16.3 shows that the intended values of integers and boolean values are obtained as

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 636 OF 778

|

d-normal forms and in combination with the property of confluence (see exercise 16.1 problem 3) it follows that all
integer and boolean values have unique normal form representations in the expression language.

Subject Reduction. In problem 16.1.5 we encourage the reader to show that types are preserved under d-reductions
(5) i.e. the type of an expression cannot change arbitrarily during reduction (program execution) — an important
static property that a dynamic semantics should obey.

Referential Transparency. Further, in problem (6) the reader is encouraged to show that the language enjoys the
property of referential transparency viz. that each variable name in an expression may be substituted by its value
while preserving the meaning of the expression — a dynamic property that any functional programming language
should obey.

Stage 2. A+FL(X). However, the language FL(X) lacks the elementary facilities for user-defined functions. Add to that
the lack of expressiveness to define even the most common useful integer operations such as addition, subtraction and
multiplication. We rectify this by defining A-abstraction and application to terms of the language. The new extended
language A+FL(X) allows us to define some (non-recursive) operators and functions over the terms of the language
FL(X). BY this addition, S-reduction has been added to the language as well. The language A+FL(X) is expressive
enough to define some of the common boolean operators and the most common order relations on integers. These have
been made possible due to the inclusion of the ternary if-the-else construct(or) ITE and construct(or)s for checking for
0 (IZ) and positive integer values (GTZ).

Stage 3. The addition of the A-abstraction and application on top of FL(X) has the drawback that functions and function
applications do not have the same status as expressions. To bring function definition and application down to the
expression level it is necessary to allow an intermingling of the two. Hence we “flatten” the language to produce a

<< | ’ | | ’ | | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 637 OF 778 |

genuinely applied A-calculus with a 8 reduction mechanism. The result is the language Apy(X).

Stage 4. Ay (X) allows the full power of the A-calculus to be incorporated into the language. Hence it allows higher-
order functions as well. However, the power of recursion is not achieved in a type-safe manner because no paradoxical
combinator can be made type-safe. Hence even to program some elementary inductive functions like addition, a recursion
operator is absolutely required. This yields the language Apq.pr(X).

<<«

| ’ | | ’ | | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 638 OF 778
PL April 17, 2023

|

A Simple Language of Terms: FLO

Let X be an infinite collection of variables (names). Consider the language
(actually a collection of abstract syntax trees) of terms T (X') defined by the
following constructors (along with their intended meanings). T, denotes the
variable-free subset of T(X') and is called the set of ground terms.

Construct | Arity Informal Meaning
Z 0 | The number O
T 0 | The truth value true
F 0 | The truth value false
P 1 | The predecessor function on numbers
S 1 | The successor function on numbers
ITE 3 | The if-then-else construct (on numbers and truth values)
17 1 | The is-zero predicate on numbers
GTZ 1 | The greater-than-zero predicate on numbers
|

<<«

> | ’ >> | PL April 17, 2023 ’

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 639 OF 778

FL(X): Language, Datatype or Instruction Set?

The set of terms T(X), where X is an infinite collection of variable names

(that are disjoint from all other symbols in the language) may be defined by
the BNF:

tu=x€eX 2| (Pt (St T|F (ITE (tt,t) (IZ t) (GTZ t)
(29)
e It could be thought of as a user-defined data-type

e |t could be thought of as the instruction-set of a particularly simple hardware
machine.

e |t could be thought of as a simple functional programming language without
recursion.

e |t is a language with two simple types of data: integers and booleans

e Notice that the constructor (ITE (t,t1,%q)) is overloaded.

| ’ FuLL SCREEN | ’ CLOSE | ’ 640 OF 778 |

Go B
| ’ - | ’ < | ’ > | PL April 17, 2023 ’ 0 PACK

Extending the language

To make this simple language safe we require

Type-checking : to ensure that arbitrary expressions are not mixed in ways
they are not “intended” to be used. For example

e { cannot be a boolean expression in (S t), (P t), (IZ t) and (GTZ t)

o (ITE (t,t1,1t0)) may be used as a conditional expression for both integers
and booleans, but ¢ needs to be a boolean and either both ¢ and ¢ are
iInteger expressions or both are boolean expressions.

Functions: To be a useful programming language we need to be able to
define functions.

Recursion : to be able to define complex functions in a well-typed fashion.
Recursion should also be well-typed

<<«

| ’ h l ’ > l ’ > l PL April 17, 2023 0 AK l ’

Typing FLO Expressions

We have only two types of objects in FLO — integers and booleans which we
represent by int and bool respectively. We then have the following elemen-
tary typing annotations for the expressions, which may be obtained by pattern
matching.

Basis. Z . int, T : bool, F : bool
Int. S:int — int, P:int — int
Bool. I1Z : int — bool, GTZ : int — bool
boolCond. ITEB : bool * bool * bool — bool

intCond. ITEI : bool * int * int — int

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 642 OF 778 |
| ’ | ’ | ’ PL April 17, 2023 !

16.3. Static Semantics of FL(X)

While dynamic semantics refers to the run-time behaviour of a program, the static semantics refers to all the context-
sensitive information about a program that needs to be gathered during the compilation process, to enable the generation of
code both for execution as well as error-reporting and handling. Most of this information about variable symbols is stored in
the symbol table and is accessed during the code-generation process for both memory allocation and the actual generation
of target code.

The purposes of both code-generation and memory allocation aspects are more or less (i.e. except for scope and the absolute
addresses of the data-objects during execution) covered by determining the types of the various objects in a program (data
objects, functions, procedures etc.). The type of a scalar data item implicitly defines the amount of storage it requires. For
example, an integer variable needs perhaps one word of storage and a floating point variable requires two-words of storage,
booleans require just a bit (but in the case of byte-addressable or word-addressable machines machines it may be more
efficient to assign a byte or word of storage to it). Similarly characters may require a byte of storage and strings require
storage that is proportional to their length. All complex data items such as records and arrays being built of the scalar
components require correspondingly proportional amounts of storage in the run-time stack. For each of these the compiler
creates a so-called data descriptor and stores it in the symbol table and refers to it while generating code. The control
units viz. expressions, commands, functions and procedures would require storage (in the code-segment) proportional to
the length of the code that is generated for each of them; and the parameters they invoke correspondingly require data

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 643 OF 778

|

descriptors to define the storage requirements for the parameters. Further in the process of compiling a procedure or a
function the types of input and output parameters in the definition (declaration) should correspond exactly with the types
of the actual parameters in each call (otherwise a compile-time error needs to be generated).

Much of the above process can all be captured by the simple process of assigning types to each data and control unit in a
program. Hence most compilers (with static scoping rules) actually perform static or compile-time type-checking.

16.3.1. Type-checking FL(X) terms

While trying to type FLO expressions we have had to introduce two new type operators viz. x and — which allow us to
precisely capture the types of expressions involving constructors such as S, P, IZ, GTZ, ITE etc. which we intend to view as
functions of appropriate arity on appropriate types of arguments. These type operators will be required for specifying the
types of other (user-defined) functions as well. Hence it makes sense for us to define a formal language of type expressions
(with type variables!) to enable us define types of polymorphic operations (which in the particular case of FL(X) is restricted
to overloading the ITE constructor). As we shall see later, this expression language of types may be defined by the grammar

o,7 :=1int | bool | 'a € TV | (ox7) | (0—7)

where 'a € TV is a type variable and all type variables are distinct from program variables in X.

What we have specified earlier are the typing axioms for the constant expressions (without variables). For the purpose of
typing expressions involving (free) variables we require assumptions to be made about the types of the variables occurring
in an expression. In most programming languages these assumptions come from the declarations of variables. For instance,

| ’ | | ’ | | ’ > > | PL April 17, 2023 ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 644 OF 778

the successor constructor S should be applied only to expressions which yield integer values. Hence for any expression
t € FL(X), (S t) would be well-typed only if ¢ : int and further (S t): int. Similarly, given three expressions t, t1, ty, the
expression (ITE (¢, t1,%g)) type-checks i.e. it is well-typed only if ¢ : bool and the types of ¢; and ¢, are the same — either
both bool or both int.

16.3.2. The Typing Rules

In a language of expressions that requires the type of each variable to be declared beforehand, the list of (free) variables
and their types may be available as a type environment I' and the rules that we give are type-checking rules. The rules for
type-checking any expression ¢ € T(X) extend the earlier specification by induction on the structure of expressions. More
precisely, the earlier specification form the basis of an induction by structure of expressions. The 0-ary constructors and
variables form the basis for the structural induction rules and have the following axioms and their types are independent
of the type environment. The type-checking rules for expressions form the induction step of the type-checking algorithm
and go as follows. These rules also assign types to each individual sub-expression along the way. We begin with the unary
constructors and conclude with the conditional operator.

Alternatively, in the absence of declarations, we could derive them as constraints on the types of variables (as we shall see
later). It is then necessary to also use the concept of type variables as distinct from program variables.

|

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 645 OF 778
PL April 17, 2023 ’ :

| |

Static Semantics of FL(X): Type-checking

Ft ool T TFT ool 2 TFZ ime V™" [z [(2)
['Ft:int ['Ft:int
SC RS) ine Y TR 1) int
['Ft¢:int ['Ft¢:int
1zt ["F(IZ t): bool G1Zt ['F(GTZ t): bool
['F1¢:bool ['F1¢:bool
['Ft%1:int ['F1%1:Dbool
TTEL [kt int ITEBt [¢ : bool
['F (ITE (t,t1,tp)) : int ['F (ITE (t,t1,tp)) : bool

| |

]

Go B | ’
PL April 17, 2023 0 PACK

LLLLLLLLLL

CCCCC

Well-typed Terms

Definition 16.1 A term t € T(X) in a type environment I' is well-typed if
there exists a proof of either ' -t : int or [' -t : bool (not both).

As we have seen before there are terms that are not well-typed. We consider
only the subset WTq(X) C Tn(X) while describing the dynamic semantics.
While T, is variable-free subset of T)(X), WTq C WT(X) is the variable-

free subset of WTH(X).

BAC | ’
| ’ < | ’ > | ’ > PL April 17, 2023

Dynamic Semantics of FL(X)

The dynamic semantics or the run-time behaviour of FL(X) expressions may
be specified in several ways.

Functional semantics. The language designer could specify the intended
meanings of the constants, constructors and operators in terms that are
useful to the user programmer as functions (as an extension of the informal
meaning specified earlier), or

Operational semantics The implementor of the language could specify the
run-time behaviour of expressions through an abstract algorithm.

But any implementation should also be consistent with the intended meanings
specified by the designer

<<«

PL April 17, 2023

Functional Semantics of FL(X):0

Boolean constants. The constructors T and F are interpreted as the
boolean constants true and false respectively.

Zero . Z is interpreted as the constant number (

Positive integers . Each k-fold application, & > 0, of the constructor S to Z
viz. (S ...(S Z)...) (abbreviated to (SK Z) for convenience) is interpreted

k— fold
as the positive integer k.

Negative integers. Similarly, each k-fold application, & > 0, of the con-
structor P to Z viz. (P ...(P Z)...) (abbreviated as (P¥ Z)) is interpreted

A\ J/

k—fold

as —k.

<< | ’ | | ’ | | ’ > > Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 649 OF 778

PL April 17, 2023

Functional Semantics of FL(X):1

e Let /7 and B denote the sets of integers and booleans respectively.

e Each well-typed expression in T(X) denotes either an integer or boolean
value depending upon its type.

oeletV ={v | v: X — (ZUB)} denote the set of all valuation environments
which associate with each variable a value of the appropriate type (either
integer or boolean).

e With the interpretation of the symbols in the language given earlier we
associate a meaning function

M WTo(X) — (V— (ZUB))

such that for each well-typed expression t € WTq(X), .#|t] is a function
that extends each v € V, inductively on the structure of expressions to a
value of the appropriate type.

<<«

| ’ | | ’ | | ’ > > | PL April 17, 2023 ’ Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’

Functional Semantics of FL(X):2

v % v(x)

4
T
F| v £ false
Z

MNP t)|v = AHtv-—1
AM|(S t)|v=AHtv+1

M |
M
M
M|
(P 1)
(S 1)
M(IZ t) v = AtJv=0
)
)

MNGTZ t)]v = MAt]v>0
M(ITE (t, t1,t0) . {ﬁ% 5 :i tri/t[(]//[t] v

| ’ | | ’ > > | PL April 17, 2023 ’ LLLLLLLLLLLLLL | ’ CLOSE

16.4. Equational Reasoning in FL(X)

From the semantics of FL(X) the following identitities are easily derived. We leave the proofs of these identities to the
reader. It is also important that some of these identities are used (oriented from left to right) in the definition of the J-rules
as rules of reduction (or “simplification”) in order to obtain normal forms. In such cases the equality is made asymmetric
(left to right).

Identities used for simplification

(P (s2) == (39)

S (P x) =12 (40)

(ITE (T,z,y)) = x (41)

(ITE (F,z,y)) = y (42)

(1z z) = T (43)

(GTZ Z) = F (44)

<« 1 < 10 v 10 = wnw 0w W cms Wl mew

PL April 17, 2023

|

Identities involving normal forms

(1Z
(1Z
(GTZ
(GTZ

(
(
(
(

W W ‘g

= F, where (S n) is a d-nf (45)
= F, where (P n) is a §-nf (46)
= T, where (S n) is a d-nf (47)
= F, where (P n) is a é-nf (48)

Besides the above identities which are actually used in an oriented form for the purpose of computation we may also prove
other identities from the functional semantics. Many of these look like they could be included in the rules for computation,

but we may not be because of

e the limits of computability in general and

e their inclusion might at times lead to non-determinism and

e in more extreme cases lead to non-termination even though there are deterministic ways to obtain d-normal forms.

However they are useful for reasoning about programs written in the language. For example the following obvious identity

(ITE (b,z,x)) = x, where b is a boolean (49)

NI e

(50)

Go BAck FuLL SCREEN | ’ CLOSE | ’ 653 OF 778

PL April 17, 2023 | ’

| |

is useful for simplifying a program for human reasoning. However, when included as a d-rule, it greatly complicates the
computation when equality of the two arms of the conditional need to be checked (when they are not merely variables
but complicated expressions themselves). There is a further complication of defining under what conditions this equality
checking needs to be performed.

|

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 654 OF 778
PL April 17, 2023

| |

Reduction Semantics

Just as the dynamic behaviour of a A-term may be described by [5-reduction, we
may describe the dynamic behaviour of a FL(X) expression through a notion of
reduction called 0 — reduction. It is important that such a notion of reduction
produces results (values) that are consistent with the functional semantics.

Example 16.2 The simplifications used to obtain the answer 197 from the

expression 142 + 1 is an example of the 5-rules used in an applied \-calculus
on the naturals.

We first begin with the d-normal forms for integers and booleans.

<< | ’ | | ’ | | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 655 OF 778
PL April 17, 2023

The Normal forms for Integers

Zero. Z is the unique representation of the number 0 and every integer
expression that is equal to O must be reducible to Z.

Positive integers . Each positive integer k is uniquely represented by the
expression (Sk Z) where the super-script k denotes a k-fold application of
S.

Negative integers. Each negative integer —£ is uniquely represented by
the expression (Pk7 Z) where the super-script k denotes a k-fold application
of P.

<<«

| ’ h l ’ > l ’ > PL April 17, 2023 Aok l ’

0 rules for Integers

See also section 16.4

(P (8 z)) —sx (51)
(S (P z)) —sx (52)

|] |
PL April 17, 2023

0 Normal Forms

Lemma 16.3 The following well-typed (in any type environment I") terms are
exactly the o-normal forms in W'I, along with their respective meanings in
the functional semantics (in any dynamic environment v € V).

1.'FZ:int and A7) v =0

2.1'+T:bool and A T| v = true

3.1'FF :bool and #|F| v = false

4. For each positive integer k, I' - (S¥ Z) : int and .#[(SF Z)]
5. For each positive integer k, I' - (P¥ Z) : int and .#[(P* Z)]

B | ’
| ’ D | ’ i | ’ > PL April 17, 2023 °

0 Rules for Conditional

See also section 16.4

Pure Boolean Reductions. The constructs T and F are the normal forms
for boolean values.

(ITE (T,z,y)) —>5 (53)
(ITE (F,z,9)) —5 Y (54)

<<«

PL April 17, 2023

0 Rules: Zero Test

Testing for zero .

See also section 16.4

(1Z Z) —s5 T
(IZ (S n)) —s F, where (S n) is a o-nf
(IZ (P n)) —4 F, where (P n) is a o-nf

/N N
Ot Ut
Sy Ot
N—— —

S0 Bea | ’
| ’ - | ’ < | ’ > PL April 17, 2023 0 PATK

0 Rules: Positivity

See also section 16.4

(GTZ Z) —s F
(GTZ (S n)) —>5 T, where (S n)is a §-nf
(GTZ (P n)) —>5 F, where (P n) is a §-nf

A~ I/~
Sy Ot Ot
GBEENGING o
—_ — —

Go B
PL April 17, 2023 0 PACK

FuLL SCREEN

Exercise 16.1

1.
2.
3.
4.
d.

Find examples of expressions in F'L0 which have more than one computation.

Prove that — s 1s terminating.

Prove that —s is Church-Rosser.

The language FL(X) extends FLO with variables. What are the new §-normal forms in FL(X)?

Subject reduction. Prove that for any well-typed term t € WTq(X), and o € {int,bool} if 't :a and t —5 1
then I' =1 : «.

Referential Transparency. Let t € WTo(X), FV(t) = {x1,...,z,} and let v be a valuation environment. If
{t1,...,t,} are ground terms such that for each i, 1 < i <n, #|x;| v= HIt;] v then prove that

(a) H[t) v=AH{t/x1,... t,/x,}t] v and
(b) {t1/x1,... tn/xn}t —5 u where M [u] v = At] v

where {t1/xy, ..., t,/x, }t denotes the simultaneous syntactic substitution of every occurrence of variable x; by the ground
term t; for 1 <1 <n.

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 662 OF 778

A+FL(X): The Power of Functions

To make the language powerful we require the ability to define functions, both
non-recursive and recursive. We define an applied lambda-calculus of lambda
terms Aq(X) over this set of terms as follows:

L,M,N =t eTy(X) M[L] | (L M) (61)

This is a two-level grammar combining the term grammar (29) with -
abstraction and A-application.

|

B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

Some Non-recursive Operators

We may “program” the other boolean operations as follows:

NOT 4 Az|ITE (z,F, T)]
AND £ X (2,))TTE (2., F)]
OR & A, y)[ITE (2,T,y)]

We may also “program” the other integer comparison operations as follows:

GEZ ¥ \2[0R (1Z), (GTZ 2))]
1Tz 4 220t (GEZ)
LEZ 4f Az|OR ((IZ z), (LTZ x))]

|

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 664 OF 778 | ’

| ’ b | ’ > | ’ >> | PL April 17, 2023 ’

A+FL(X): Lack of Higher-order Power?

Example 16.4 The grammar (61) does not allow us to define expressions such
as the following:

1. the successor of the result of an application (S (L M)) where (L M)
yields an integer value.

2. higher order conditionals e.g. A\x|(ITE ((L x),(M x),(N x)))| where
(L x) yields a boolean value for an argument of the appropriate type.

3. In general, it does not allow the constructors to be applied to \-expressions.

So we extend the language by allowing a free intermixing of \-terms and terms
of the sub-language T (X).

B | ’
| ’ D | ’ i | ’ > PL April 17, 2023 °

A7 (X): Higher order functions

We need to flatten the grammar of (61) to allow A-terms also to be used as
arguments of the constructors of the term-grammar (29). The language of
applied A-terms (viz. Aq(X)) now is defined by the grammar.

LMN:=z€X 'z | T | F

(P L) (S L)
(1Z L) | (GTZ L) (62)
(ITE (L, M, N))
Az[L] | (L M)

. Go BAck | ’
PL April 17, 2023

Unfortunately the result of flattening the grammar leads to an even larger number of meaningless expressions (in particular,
we may be able to generate self-referential ones or ones that may not even be interpretable as functions which yield integer
or boolean values.

It is therefore imperative that we define a type-checking mechanism to rule out meaningless expressions. As mentioned
before, type-checking is not context-free and hence cannot be done through mechanisms such as scanning and parsing and
will have to be done separately before any code-generation takes place.

We will in fact, go a step further and design a type-inferencing mechanism that will prevent meaningless expressions from
being allowed.

Further, given a well-typed expression we need to be able to define a meaning for each expression that is somehow compatible
with our intuitive understanding of what A-expressions involving integer and boolean operations mean. This meaning is
defined through an operational semantics i.e. a system of transitions on how computation actually takes place for each
expression. We define this through a reduction mechanism that is consistent with reduction relations that we have earlier
studied for the untyped A-calculus.

In order for it to be compatible with the notions of reduction in the A-calculus we require to define a notion of reduction first
for expressions that do not involve either A abstraction or A application. We refer to this notion of reduction as d-reduction.

Furthermore we need to be able to define d-normal forms for these expressions. Since the language is completely symbolic,
these normal forms would serve as the final answers obtained in the evaluation of these expressions.

|

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 667 OF 778
PL April 17, 2023 i :

| |

Exercise 16.2

1. Prove that the language of (01) is properly contained in the language of (62).

2. Give examples of meaningful terms generated by the grammar (62) which cannot be generated by the grammar (61).

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 668 OF 778

|

Recursion in the Applied Lambda-calculus

The full power of a programming language will not be realised without a recur-
sion mechanism. The untyped lambda-calculus has “paradoxical combinators”
which behave like recursion operators upto =g.

Definition 16.5 A combinator Y is called a fixed-point combinator if
for every lambda term L, Y satisfies the fixed-point property

(Y L)=p (L (Y L)) (63)
Curry’s Y combinator (Y()

Ye Laricc ©) where CL az((f (z 2))]
Turing’s Y combinator (Y)

YT (T Twhere TE Ay 2[(e (yyz)

| <]

| ’ > > | i ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’
PL April 17, 2023

The Paradoxical Combinators

Lemma 16.6 Both Y and YT satisfy the fixed-point property.

<<«

PL April 17, 2023

Proof of lemma 16.6

Proof: For each term L we have

L)
MI(C O L)
{L/1yC {L/}C)
#[(L (z x))] Ae[(L (z 2))])
=s (L (Ye L))

(Ye
=
(
(A

Similarly for Y+ it may be verified that it satisfies the fixed-point property.

(Yr L)
(T'T) L)

|

< | < | |

QED

Go B
>> PL April 17, 2023 0 AR

FuLL SCREEN

CLOSE

671 OF 778

Apeep1,(X): Recursion

e But the various Y combinators unfortunately will not satisfy any typing rules
that we may define for the language, because they are all “self-applicative”
In nature.

e Instead it is more convenient to use the fixed-point property and define a new
constructor with a d-rule which satisfies the fixed-point property (definition

(63)).

e REC is assigned the type ((7—7)—7) for each type 7.

|

| ’ < | ’ | 4 | ’ > > . 0 BACK | ’
PL April 17, 2023

We extend the language A7 (X)) with a new constructor

Apeep1,(X): Adding Recursion

L:=... | (REC L)

and add the fixed point property as a o-rule

(REC L) —»5 (L (REC L))

(64)

|

> Go B | ’
| ’ PL April 17, 2023 0 AR

Typing REC
With REC : ((t—7)—7) and L : 7—7 we have that
(REC L) LT
(L (REC L)) : 7
which

e type-checks (without recourse to self-reference) as a constructor and

e is consistent with our intuition about recursion as a syntactic unfolding
operator.

<<«

PL April 17, 2023

Recursion Example: Addition

Consider addition on integers as a binary operation to be defined in this lan-

guage. We use the following properties of addition on the integers to define it
by induction on the first argument.

Example 16.7

[y ifrx =0
r+y=< (e—1)+(y+1) ifz>0 (65)
Lz +1)+(y—1) ifzx <0

Using the constructors of Ap..rr(X) we require that any (curried) definition of addition on numbers should be a solution
to the following equation in Ap..;z(X) for all (integer) expression values of x and .

(plusc x y) =pgs ITE ((IZ z),y, ITE ((GTZ z), (plusc (P z) (S y)), (plusc (S x) (P y)))) (66)

Equation (66) may be rewritten using abstraction as follows:

plusc =5 Ae[Ay[ITE ((IZ x),y, ITE ((GTZ z), (plusc (P z) (S y)), (plusc (S z) (P y))))]] (67)

We may think of equation (67) as an equation to be solved in the unknown variable plusc.

Consider the (applied) A-term obtained from the right-hand-side of equation (67) by simply abstracting the unknown plusc.

adde £\ f[\x y[TTE (12 2),, TTE ((GTZ 2), (f (P) (S), (f (S 2) (P y))))]] (68)
Claim 16.8
(REC addc) —; (addc (REC addc)) (69)
and hence
(REC addc) =35 (addc (REC addc)) (70)
- | | « | | > | | > GoBack | | Puwsommy | | Orosn | [omsormms

PL April 17, 2023

|

Claim 16.9 (REC addc) satisfies exactly the equation (67). That is

((REC addc) =z y) =5 ITE ((IZ x),y, ITE ((GTZ z), (REC addc) (P) (S y)), ((REC addc) (Sz) (Py))) (71)

Hence we may regard (REC addc) where addc is defined by the right-hand-side of definition (68) as the required solution to
the equation (66) in which plusc is an unknown.

The abstraction shown in (68) and the claims (16.8) and (16.9) simply go to show that M =, Af[{f/z}L] is a solution to

the equation z =g; L, whenever such a solution does exist. Further, the claims also show that we may “unfold” the recursion
(on demand) by simply performing the substitution {L/z}L for each free occurrence of z within L.

|

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 677 OF 778
PL April 17, 2023 i :

| |

Exercise 16.3

1. Prove that the relation —s is confluent.

2. The language FL does not have any operators that take boolean arguments and yields integer values. Define a standard
conversion function B2l which maps the value F to Z and T to (S Z).

3. Using the combinator add and the other constructs of Ax(X) to
(a) define the equation for products of numbers in the language.
(b) define the multiplication operation mult on integers and prove that it satisfies the equation(s) for products.

4. The equation (65) is defined conditionally. However the following is equally valid for all integer values x and y.

r+y=(x—-1)+(@y+1) (72)
(a) Follow the steps used in the construction of addc to define a new applied addc’ that instead uses equation (72).
(b) Is (REC addc’) =35 (addc’ (REC addc’))?
(c¢) Is addc =ps addc’?
(d) Is (REC addc) =gs (REC addc’)?
(e) Computationally speaking (in terms of B and 0 reductions), what is the difference between addc and addc’?

5. The function addc was defined in curried form. Use the pairing function in the untyped A-calculus, to define

(a) addition and multiplication as binary functions independently of the existing functions.

R

PL April 17, 2023 ’ Go Back | ’ FULL SCREEN | ’ CLOSE | ’ 678 oF 778 |

(b) the binary ‘curry’ function which takes a binary function and its arguments and creates a curried version of the
binary function.

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 679 OF 778

|

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

680 OF 778

| [

16.5. Apecrr(x) With type rules

Typing ARecFL(X) expressions
We have already seen that the simple language FL has
e two kinds of expressions: integer expressions and boolean expressions,

e there are also constructors which take integer expressions as arguments and
yield boolean values

e there are also function types which allow various kinds of functions to be
defined on boolean expressions and integer expressions.

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 681 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

|

The Need for typing in Ap, . (X)

e A type is an important attribute of any variable, constant or expression,
since every such object can only be used in certain kinds of expressions.

e Besides the need for type-checking rules on T(X) to prevent illegal con-
structor operations,

— rules are necessary to ensure that A-applications occur only between terms
of appropriate types in order to remain meaningful.

—rules are necessary to ensure that all terms have clearly defined types at
compile-time so that there are no run-time type violations.

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 682 OF 778 |
| ’ | ’ | ’ PL April 17, 2023 ’ !

TL: A Language of Simple Types

Consider the following language of types (in fully parenthesized form) defined
over an infinite collection 'a € TV of type variables, disjoint from the set of
variables. We also have two type constants int and bool.

0,7 =1int | bool | 'a €TV | (ox1) (0—T)

Notes.

e int and bool are type constants.

e In any type expression 7, TV ar(7) is the set of type variables
e x is the product operation on types and
e — is the function operator on types.

e We require * because of the possibility of defining functions of various kinds

of arities in A (X).

<<«

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 683 OF 778

|

TL: Precedence and Associativity

e Precedence. We assume * has a higher precedence than —.
e Associativity.

— % Is left associative whereas
— — is right associative

<<«

| > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE
| ’ D | ’ | ’ PL April 17, 2023 °

| |

684 OF 778

|

Type-inference Rules: Infrastructure

The question of assigning types to complicated expressions which may have
variables in them still remains to be addressed.

Type inferencing. Can be done using type assignment rules, by a recursive
travel of the abstract syntax tree.

Free variables (names) are already present in the environment (symbol ta-

ble).

Constants and Constructors. May have their types either pre-defined or
there may be axioms assigning them types.

Bound variables. May be necessary to introduce “fresh” type variables in
the environment.

<<«

PL April 17, 2023

Type Inferencing: Infrastructure

The elementary typing defined previously (§16.3.1) for the elementary expres-
sions of FL does not suffice

1. in the presence of A\ abstraction and application, which allow for higher-order
functions to be defined

2.in the presence of polymorphism, especially when we do not want to unnec-
essarily decorate expressions with their types.

<<«

PL April 17, 2023

Type Assignment: Infrastructure

e Assume [is the environment” (an association list) which may be looked up
to determine the types of individual names. For each variable x € X, I'(x)
yields the type of zie. ['(z) =0 ifx:0 €T,

o For each (sub-)expression in Ap..p7(X) we define a set C' of type con-
straints of the form o = 7, where T is the set of type variables used in

C.

e The type constraints are defined by induction on the structure of the expres-
sions in the language Ap..p7(X).

e The expressions of Ap..p7(X) could have free variables. The type of the
expression would then depend on the types assigned to the free variables.
This is a simple kind of polymorphism.

e [t may be necessary to generate new type variables as and when required
during the process of inferencing and assignment.

<<«

“usfially a paw of the |symbol table | | > |

i ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’
PL April 17, 2023

Constraint Typing Relation

Definition 16.10 For each term L € Ap,.p7(X) the constraint typing
relation is of the form

I'L:7 >p C
where

o [' is called the context” and defines the stack of assumptionsb that may be
needed to assign a type (expression) to the (sub-)expression L.

e T is the type(-expression) assigned to L
e (' is the set of constraints

o T" is the set of “fresh” type variables used in the (sub-)derivations

“usually in the symbol table
bincluding new type variables

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 688 OF 778
| ’ | ’ | ’ PL April 17, 2023 ’ !

Typing axioms: Basic 1

The following axioms (c.f Typing FLO Expressions) may be either predefined or
applied during the scanning and parsing phases of the compiler to assign types
to the individual tokens and thus create an initial type environment [').

Z ['FZ:int DQ)@ L ['FT:bool D@@ K ['FF:bool D@@

S : : P : :
['FS:int—int >] ['"FP:int—int >0 0

17 ['FIZ:int—Dbool >0 l GTZ ['F GTZ : int—bool >0)

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Typing axioms: Basic 2

ITEI

['F ITE : boolxint*xint—int >0 0

ITEB

['+ ITE : boolxbool*xbool—bool > 0

Notice that the constructor ITE is overloaded and actually is two constructors
ITEI and ITEB. Which constructor is actually used will depend on the context
and the type-inferencing mechanism.

PL April 17, 2023

Type Rules: Variables and Abstraction

Var

Fl_CCF(CIZ) D@ @

Ne:obL:7 >p C

Abs 'EXx|L]:o—=1 >p C

PL April 17, 2023

Type Rules: Application
App 'EM:7 >p, Gy (Conditions 1. and 2.)
F|_<L M):’a I>T/ C/

where

e Condition 1.T1NTHr =T NTVar(t)=T,NTVar(c) =10

Condition 2.'a ¢ T3 U Ty, U TVar(c) U TVar(t) U TVar(C;) U
TVar(Cy).

OT/:T1UT2U{/a}
o ('=C1UCYU{o =1~"a}

S0 Bea | ’
| ’ - | ’ < | ’ > PL April 17, 2023 0 PATK

Example 16.11 Consider the following simple combinator \x[Ay[\z[(z (y 2))]]] which defines the function composition
operator. Since there are three bound variables x, y and z we begin with an initial assumption I' = x : 'a,y : 'b, z : 'c which
assign arbitrary types to the bound variables, represented by the type variables 'a, 'b and 'c respectively. Note however, that
since it has no free variables, its type does not depend on the types of any variables. We expect that at the end of the proof
there would be no assumptions. Our inference for the type of the combinator then proceeds as follows.

L.o:'ajy:v,z:'ckax:'a >y 0 (Var)
2.x:'a,y:"b,z:'chy:'o >y 0 (Var)
8.x:a,y b,z ckzi'c >y 0 (Var)
4.v:'ay:bz'ck(y 2)'d Dpgy {'b="c='d} (App)
d.x:'ay:'bzilck(x (y 2)):'e Dypaey {b="c='d'a="d='e} (App)
6.v:'a,y:"oE X[z (y 2))]:'c=>'e Dpaey {b="c='d,’a="d=e} (Abs)
7. x:'ak MyAz[(z (y 2))]] : b='c='e Dypaey {'b="c—='d,'a="d—'e} (Abs)
8. Fxxdy[Mz[(z (y 2))]]] : 'a=b—='c='e Dypae) {'b="c—='d,"a="d—e} (Abs)
Hence Az \y[Az[(z (y 2))]]] : 'a="b—="c—'e subject to the constraints given by {'b = 'c—'d,’a = 'd—'e} which yields
Az Ay Az[(x (y 2))]]] : ([d='e)—=(c='d)—='c—'e
- | | “ | | > | | > Gomack | [Fuwsomws | | Cross | [sosor s

PL April 17, 2023

|

Principal Type Schemes

Definition 16.12 A solution for ' = L : 7 >p C' is a pair (S, o) where S
is a substitution of type variables in T such that S(7) = 0.

e The rules yield a principal type scheme for each well-typed applied \-term.
e The term is ill-typed if there is no solution that satisfies the constraints.

e Any substitution of the type variables which satisfies the constraints C'is an
instance of the most general polymorphic type that may be assigned to the
term.

<<«

PL April 17, 2023

Exercise 16.4

1. The language has several constructors which behave like functions. Derive the following rules for terms in To(X) from
the basic typing axioms and the rule App.

<<

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 695 OF 778

|

Sx I'tt:7 >p C
I'F(S ¢t):int >y CU{7 =int}

Px I'tt:7 >p C
'F(P t):int >p CU{r =int}

17 I'tt:7 >p C
['F(IZ t):bool >y CU{7T = int}

I'tt:7m >p C
GTZx T'F (GTZ) :bool 7 CU{r = int}

I'tt:o >p C

I'Ety:r >, 4 o . o
ITEx F"toZU DTO C() (TﬂTl—TlmTo—ToﬂT—@)

I'E(ITE (t,t1,t0)):7 >p C'
where T" =TUTyUTy and C"'=CUC, UCyU {0 =bool, T = v}
2. Use the rules to define the type of the combinators K and S?

R

PL April 17, 2023 ’ Go Back | ’ FULL SCREEN | ’ CLOSE | ’ 696 OF 778 |

3. How would you define a type assignment for the recursive function addc defined by equation (68).
4. Prove that the terms, w = Ax[(z x)] and Q = (w w) are ill-typed.
5. Are the following well-typed or ill-typed? Prove your answer.

<< | ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 697 oF 778 |

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

698 OF 778

| [

17.

Formal Semantics of Languages

Formal Semantics of Languages

Calvin and Hobbes by Bill Watterson for September 01, 1992

HEY DAD, KNOW
WHAT T FIGURED
OUT? THE
MEANING OF
WORDS ISNT

A FIXED THING ! P

ANY WORD CAN
MEAN ANYTHING !

BY GIVING WORDS NEW
MEANINGS, ORDINARY
ENGLISH CAN BECOME AN
EXCLUSIONARY QODE! TWO
GENERATIONS CAN BE
DIVIDED BY THE SAME
LANGUAGE !

<<

| | >

© 1992 Wanerson/ Dstriduted by Unwersal Press Syndicale

PL April 17, 2023

WELL BE UNABLE TO
COMMUNICATE .

To THAT END, T'LL BE
INVENTING NEW DEFINITIONS
FOR. COMMON WORDS, SO

DONT You THINK [MARVY.
THATS TOTALLY
SPAM? TS
LUBRICATED
WELL, IM
PHASING.

| ‘ CLOSE | ‘ 699 oF 778

| [

The Concept of Environment

e Any imperative language indirectly exposes the memory (or store) to the
user for manipulation.

e Memory (or store) is a set Loc of locations used to store the values of
variables.

e Unlike in an actual computer, we do not consider all memory locations to be
of the same size and shape. It is necessary to be able to associate a location
to be a single cell that can store even a complex value of the appropriate

type.
e Each variable in an imperative program is assigned a location.
e The environment v : X — Loc is an association of (imperative) variables

to locations and EFnv = {v | v : X — Loc} denotes the set of all
environments.

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 700 OF 778 |

b | ’ b | ’ > | ’ > l PL April 17, 2023 ’

The Concept of State

e Values is the set of values that may be stored in memory. In general values
is a disjoint union of various sets of values. In the case of the simple language

FLO, Values = (int W bool)“.

e We define the store to be a (partial) function from Loc to the set Values
of possible values that may be stored in memory. ¢ : Loc — Values.
Stores = {o | o : Loc — Values} is the set of possible stores.

e The (dynamic) state of a program is defined by the pair (v, 0) € States =
Env x Stores.

“The use of W rather than U ensures that for each element in the set Values it is possible to identify which component set it comes from.

R | ’ h l ’ > l ’ > PL April 17, 2023 0 AK l ’

State: lllustration

132456

-87567

o I-values. v(z) =1i:bool, v(y) =j: int, v(z) =k : int
e r-values. (i) =T : bool, o(j) = 132456 : int, o(k)

| |

| |

| |

PL April 17, 2023 ’

—&7567 : int

Go B

ACK

| |

References in Languages

ML-like impure functional languages

e have an explicit polymorphic ‘a ref type constructor. Hence =z
bool ref, y,z : int ref and x is a named reference to the location
i

e have an explicit unary dereferencing operator ! to read the value contained
in the location referenced by z, i.e. lx = o(i).

e [he actual locations however are not directly visible.
C-like imperative languages are not as fussy as the ML-like languages. C (and

C++) even treats locations only as integers and allows integer operations
to be preformed on them!

<< | | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 703 OF 778 |
| ’ | ’ | ’ PL April 17, 2023 ' !

l-values and r-values

B |
[
—87567
/
X Z w

o | is the l-value of wi.e v(w) =1¢€ Loc
e m is the r-value of w i.e. o(y(w)) =!lw =m € Loc
e m is also an |-value since lw : int ref

o |(lw)="T7T8663 : int is the r-value of lw

<<«

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

17.0.1. l-values, r-values, aliasing and indirect addressing

The terms “l-value” (for “left-value”) and “r-value” (for “right-value”) come from the practice in most imperative languages
of writing assignment commands by overloading the variable name to denote both its address (y(z)) in Loc as well as the
value o(7y(x)) stored in memory. Consider the example,

o v :=x +y (Pascal)
o v =1+ y (C, C++, Java, Python, Perl)
The occurrence of “x” on the left-hand side of the assignment command denotes a location y(z) whereas the occurrences

of “2”7 and “y” on the right-hand-side of the assignment denote the values o(v(x)) and o(y(y)) respectively. The term
“dereferencing” is used to denote the action of “reading” the value stored in a location.

e This notation for assignment becomes a source of tremendous confusion when locations are also valid values, as in the
case of indirect addressing (look at w) and may be manipulated.

e The confusion is further exacerbated when locations are also integers indistinguishable from the integers stored in the
locations. The result of dereferencing an integer variable may be one of the following.

— An invalid location leading to a segmentation fault. For instance, the integer could be negative or larger than any
valid memory address.

<< | ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 705 OF 778 |

— Another valid location with an undefined value or with a value defined previously when the location was assigned to
some other variable in a different job. This could lead to puzzling results in the current program.

— Another valid location which is already the address of a variable in the program (leading to an aliasing totally
unintended by the programmer). This could also lead to puzzling results in the current program.

Modern impure functional languages (which have strong-typing facilties) usually clearly distinguish between locations and
values as different types. Hence every imperative variable represents only an l-value. Its r-value is obained by applying
a dereferencing operation (the prefix operation !). Hence the same assignment command in ML-like languages would be
written

o v :=lz+!y (ML and OCaml)

The following interactive ML session illustrates aliasing and the effect on the aliased variables.

Standard ML of New Jersey v110.76 [built: Tue Oct 22 14:04:11 2013]
- val u = ref 1;

val u = ref 1 : int ref

- val v = u; (*x u and v are aliases for the same location *)

val v = ref 1 : int ref
- v = ly+l;

val it = () : unit

- lu;

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 706 OF 778
| ’ | ’ | ’ PL April 17, 2023 ' !

|

val it
- lv;

val it
- Vv :=
val it

- lu;.val it = 3 : int

- lv;
val it

2 : int

2 : int
v+1;

() : unit

3 : int

The following ML-session illustrates indirect addressing (and if you get confused, don’t come to me, I am confused too;

confusion is the price we pay for indiscriminate modification of state).

Standard ML of New Jersey v110.76 [built: Tue Oct 22 14:04:11 2013]

- val
val x
- val
val y
- val
val z

val it

X

<

= ref (ref 0);
ref (ref 0)

= Ix;
ref O :
= ref y,;
ref (ref 0)

y+1;
() : unit

int ref ref

int ref

int ref ref

<<«

| |

<]

| 4.4

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

707 OF 778

|

-y

val it =1 int

- 1z;

val it = ref 1 : int ref
- 1('z);

val it = 1 : int

- 1('x);

val it = 1 : int

With the introduction of references, the store may have locations whose r-value is another location. In such a situation.
Further if locations themselves are addressed by (non-negative) integer values, there woudl be an obvious clash with normal
integer values of simple integer variables. Hence we woudl have to address this problem as follows.

e Allow locations to be part of the set of values and

e In the interests of maintaining a strong type discipline, distinguish between sets of values that may not be disjoint.

We would then address the above problems by (re-)defining Values to include locations too. Thus with the inclusion of
references we have Values = int & bool W Loc.

<<«

| | > > . Go BACK | ’ FuLL SCREEN | ’ CLOSE | ’ 708 OF 778
| ’ | ’ | ’ PL April 17, 2023 ' !

|

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

709 OF 778

17.1. The Semantics of Expressions in FL(X)

Semantics of Expressions of FL(X)

e Consider the language FL(X). Instead of the d-rules defined earlier, we as-
sume that these terms are evaluated on a hardware which can represent int
and bool.

e Assume int is the hardware representation of the integers and bool =
{T,F}.

e We assume that every (sub-)expression in the language has been typed with
a unique type attribute.

|

<< | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 710 OF 778
PL April 17, 2023

Functional Semantics of FL(X)

The language FL(X) is a pure expression language that is
o free of side-effects and
o free of references

Each expression e € WT(X) denotes a value from the set Values depending
on the state it is evaluated in. The meaning of e € WTH(X) is given by a
function

&le| . States — Values (73)
and is therefore a function of the state. Hence
& WTq(X) — States — Values (74)

The semantics given earlier now reads as follows (with the valuation v replaced
by a state s = (v, 0)).

|

B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 AR

A New Functional Semantics of FL(X)

& T_
&|F]
&Z]
ElP 1)
ElS 1)

)
)
&1z 1)
)
)

E(GTZ t)]
éa[(ITE <7f t17t0>

|

>]

df

df

= o(y(x)), for s =(v,0) (75)
= true (76)
false (77)
(78)

(&[t] s) — 1 (79)
(&[] 5) + 1 (80)
(&t] s) = (81)
(&[t] s) >0 (82)

i;ﬂ z :E i)[f];[t i I - I

Evaluating FL(X) on a machine
e We previously treated FL(X) as simply a data-type and gave d-rules. See

—lemma 16.3,
— o-nf for the conditonal,
—the zero test

— test for positivity

e Here we define a deterministic evaluation mechanism —, on a more real-
istic hardware which supports integers and booleans

e The normal forms on this machine would have to be appropriate integer and
boolean constants as represented in the machine.

e We define an expression evaluation relation —, such that

—C (States x WT(X)) x (States x (int U bool))

|

<«

| > > > | . ’ Go BAcK | ’ FuLL SCREEN | ’ CLOSE | ’ 713 OF 778
| ’ | ’ | ’ PL April 17, 2023 i !

Operational Semantics: Constants and Variables

Unless there is a prior generally-accepted mathematical definition of a language at hand, who is to say

whether a proposed implementation is correct?

Let 0 € States be any state.

T

v {0, T) —¢ (0,T)

Dana S. Scott (1969)

|

<«

PL April 17, 2023

CLOSE

Operational Semantics: Integer-valued Expressions

v F{o,e) —¢ (o,m)

P TP) —. (om—1) (©m:int)
vF{o,e) —¢ (o,m) .
> vFE{(0,(S €)) —¢ (o,m+ 1) (€;m: int)

|

| d g Go B
| ’ PL April 17, 2023 0 AR

FuLL SCREEN

CCCCC

Operational Semantics: Boolean-valued Expressions

vF{o,e) —¢ (o,m)
v {(0,(IZ e)) —¢ (0,F)

170 (e,m: int,m <> 0)

v E{o,e) —¢ (0,0)

171 vE{0,(IZ €)) —¢ (0,T)

(e : int)

vF{(o,e) —¢ (o,m)
ST ez @) —e (o,

) (e,m: int,m <= 0)

CT71 vF{(o,e) —¢ (o,m)

T (0. (GTZ €)) —p (0.T) (e,m: int,m > 0)

> »>»> | ; ’
| ’ | ’ PL April 17, 2023

Operational Semantics: Conditional Expressions
Y - <Ua €> — e <O7 F>
v (o, (ITE (e, ey, ep))) —e (0,€p)

ITEIO (e1,€p : int)

v E{o,e) —¢ (0,T)

ITEI1
v F {0, (ITE (e, eq,ep))) —re (0,€]

> (e1,€0 : int)

vE{o,e) —¢ (0,F)

v {0, (ITE (e, eq,ep))) —re (0,€p) (€1, €0 : Dool)

ITEBO

vE{o,e) —¢ (0,T)
v {0, (ITE (e, eq,ep))) —re (0,€71)

ITEB1 (e1, €0 : bool)

| > > > | . ’
| ’ | ’ | ’ PL April 17, 2023

Reduction vs. Functional vs. Operational Semantics

Theorem 17.1 For each term e € W (X) and state s = (7, 0), and valu-
ation v = o o7y

M el v=Elel s (84)
vE{o,e) —¢ (0,8€] s) (85)
N

Taken in conjunction with lemma 16.3, 0-nf for integers, 0-nf for the conditonal,
the zero test and test for positivity essentially all the various semantics and
computation rules may be proved mutaully equivalent and conforming to our
informal understanding of the language.

The expression language is purely functional since the evaluation of an expres-
sion in any state does not effect any change in the state.

|

<< | ’ | | ’ > | ’ > > | . ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 718 OF 778
PL April 17, 2023 : o

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

719 oF 778

| [

<<

»>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

720 OF 778

| [

17.2.

The Operational Semantics of Commands

WHILE: Big-Step Semantics

We are faced with the problem of variables which actually vary

<<«

Christopher Strachey (1967)

S0 Bea | ’
| ’ - | ’ < | ’ > PL April 17, 2023 0 PATK

FuLL SCREEN | ’ CLOSE | ’ 721 OF 778

|

The WHILE language

e We initially define a simple language of commands.
e The expressions of the language are those of any term algebra T (X).

e We simply assume there is a well-defined relation —, for evaluating ex-
pressions that is proven correct.

<<«

PL April 17, 2023

State Changes or Side-Effects

e State changes are usually programmed by assignment commands which oc-
cur one location at a time.

e In the simple WHILE language side-effects do not occur except by explicit
assignment commands.

<<«

PL April 17, 2023

Modelling a Side-Effect

Given a store o, a variable = such that y(z) = ¢ and o(¢) = a, the state
change effected by the assignment x := b is a new store that is identical to o
except at the location ~(x) which now contains the value b

o = [y(x) — blo

.e.

b otherwise

o - { o(t) if £ # ()

<<«

| ’ h l ’ > l ’ > PL April 17, 2023 0 AK l ’

Aliases

Definition 17.2 Two (or more) variables are called aliases if they denote the
same location (y and wu in the figure below).

i

/T

132456

-87567

78663

<<«

[

Ldld

PL April 17, 2023

a
l GO YO

juo)

The Commands of the WHILE Language

co, C1, ¢ = skip Skip
T .=e Assgn
{co} Block
Co, C1 Seq
if e then c; else ¢j fi Cond
while e do ¢ od While

where ¢ is either an integer or boolean expression in the language FL(X) with
operational semantics as given before.

For any signature) and a set of variables X we denote the set of all commands
over the well-typed expressions W1 (X) by WHILEq(X)

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Functional Semantics of WHILE

A New Functional Semantics of FL(X)

% : WHILEG (X) — States — States

For any s = (v, 0) € States,

€ |skip

Clr =e

Clict

Cleoi c1

€ |if e then c; else ¢ fi]

df

Ay (v,0") where ¢’ = [y(z) — &e] so

S e €|c| s

s 4) (6l
} if &le| s =true

if &le] s = false

Rewriting Functional Semantics of WHILE

A New Functional Semantics of FL(X)

We may express the same semantics as follows using the A notation as follows.

% [skip] 4 As|s]| (86)
Gl =] LAy, 0)[(y,0")] (87)
where ¢/ = v(x) — Ele| (v,0)|o
¢l{c}] L rs[6]d (38)
Cleger] L Ns[Ber] (e) (9)
€ |if e then ¢ else ¢ fi] Y rs { ?Eﬂ i :: ?E Z i ?{Zie (90)

Semantics-induced Equality on Commands

Before defining the meaning of the command while e do ¢ od it is only ap-
propriate that we mention some trivial properties of the language regarded as
an algebra (see theorem 17.4).

As in the case of the idenitites of the expression language, the semantics of
commands induces an equality relation on commands.

Definition 17.3 For any two commands c{ and c»,
1.€|c;) =%€|co| ifand only if for all s € States, €|c1] s = €|co] s
2.¢1 =¢ ¢y if and only if €|c1| = €|c]

<<«

PL April 17, 2023

WHILE(X) is a Monoid

Theorem 17.4 WHILE((X) is a monoid under sequencing (;) with skip as
the identity element. That is, for all commands c, ¢, co € WHILEq (X)),

Closure of sequencing. c1;co € WHILEQ(X).
Associativity of sequencing. co; {c1; o} =¢ {co;c1}; e
Identity of sequencing . cg; skip =, ¢y =¢ skip: ¢
N

We could easily add (for convenience) an "if e then ¢ fi" command to the
language (see section 4.4) with the meaning

if e then ¢ fi = if ¢ then c else skip fi (91)

| | « | | .] - omes | |
PL April 17, 2023

The While Loop: ldentities
Intuitively the while-loop satisfies the following identities

€|while e do c od] s

B <(€|c; while e do c od| s if &le| s = true
| s if &le] s = false
. [€[while e do c od] (€[] s) if &le] s = true
{By equation (89)} = «) £ Elel 5 — false

Zif e then {c; while ¢ do ¢ od} else skip fi] s
€ |if e then {c; while e do c od} fi] s

Operational Semantics: The While Loop

{By equation (90)}
{By equation (91)}

Go B | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 PACK

Loop Unrolling

Hence by the last identity we get

while e do ¢ od =, if e then {c¢; while e do c od} fi

(92)

The last identity is actually a form of “recursion unfolding” (8) and is called
“loop unrolling” since it may be unrolled as many times as we require.

while e do c od

if e then {c¢; while e do c od} fi

=, if e then {¢;if e then {c; while e do ¢ od} fi} fi

=, if e then if e then {c;if e then {c; while e do c od} fi} fi fi

<<«

| ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE

| |

732 OF 778

|

The Semantics of the while command

From the above identities and taking inspiration from the claims 16.8, 16.9
and the fixed-point theorem and corollary 13.6 it follows that

“Iwhile ¢ do ¢ od] LY (Af As H

true

false)

f(€|c] s) if &le] s
S if &le| s

Go B | | rPous | |
| ’ < | ’ > | ’ »>> PL April 17, 2023 0 BAck ULL SCREEN

17.3. Loop unrolling

We know that each sentence of a language has to be finite. However the while do od-loop may be considered a finite
representation of an “infinite” program.

Example 17.5 Consider the program
x :=Z;while Tdo z := (S x) od

By the semantics it is clear that this program does not ever terminate. The value of x is given by o(y(x)). Starting from
x :=Z, and abbreviating the state to the value o(y(z)) we have

¢|while T do z := (S z) od] 0
= %[while Tdo z:=(S z) od] 1
= %|while Tdo z:= (S z) od] 2
= %|while Tdo z:=(S z) od] 3
= (f[whlle Tdoz:=(S z)od] 4
ad infinitum.
<< | ‘ < | ’ > | ‘ »>» Go Back | ‘ FULL SCREEN | ‘ CLOSE | ‘ 734 OF 778

PL April 17, 2023

|

Example 17.6 Consider the program
while T do skip od

By equation (17.2) the loop unrolls infinitely and even though skip does not alter the state in any way, it does not terminate
either. Hence in terms of the operational semantics of the rule this command never actually yields a state. Taking a cue
from the previous example, we may think of this program as representing a function that is undefined in all states. Letting

L denote the undefined state we have
¢’|while T do skip od] s = L

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 735 OF 778

|

Operational Semantics: Basic Commands

Skip

v F (o,skip) —

vF{o,e) — m
v o,z :=e) —. [y(z) = m|o

Assgn

Notes:
1. The Skip rule corresponds to any of the following:

® 2 noop
e the identity function or identity relation on states
e a command which has no effect on states

2. The assignment is the only command in our language which creates a side-
effect (actually changes state)

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 736 OF 778 |

| ’ < | ’ > | ’ > | PL April 17, 2023 ’

Operational Semantics: Blocks

We have defined a block as simply a command enclosed in braces. It is meant to
delimit a (new) scope. Later we will see that there could be local declarations

as well, in which case the semantics changes slightly to include a new scope

Block

7|_<0-76> H(13 OJ

yE{o{c}) — o

<<«

| o] |
PL April 17, 2023

Operational Semantics: Sequencing

1

Y - <07 CO> ¢ OJ)

Seq vk (o,c)) —, o
v F (o, co;cp) H% o'

Notice that sequencing is precisely the composition of relations. If the relation
is a function (in the case of our language it actually is a function),
sequencing would then be a composition of functions

1

C

<<«

| 4.4

PL April 17, 2023

Operational Semantics: Conditionals

v {o,e) —¢ F,
CondO 8% - <U, Co> 4)}3 g
1

v+ (0,if e then ¢ else ¢y fiy —¢ oy

v {o,e) —¢ T,
Cond1l v {0, c) —% o1
1

v F {o,if e then c; else ¢y fi) —, 0

Selective Evaluation.
Notice again the effect of selective evaluation in the operational semantics of
the conditional and again in the operational semantics of the while loop.

e

Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 739 OF 778 |

PL April 17, 2023 ’

The While loop: Operational Rules

The While Loop: ldentities

e We use the fact that the while e do c od is really a form of recursion —
actually it is a form of “tail recursion”. Hence the execution behaviour of
while e do ¢ od is exactly that of

if e then {c; while e do c od} else skip fi (94)

e The following rules may be derived from (94) using the rules for condi-
tional, sequencing and skip (though the number of steps may not exactly
correspond).

<<«

PL April 17, 2023

Operational Semantics: The While Loop

WhileO

”Y|_<(7,e> —, F
v+ {o,while e do c od) —. o

The While Loop: ldentities

Whilel

vE{o,e) —¢ T,

fy l_ <07 C> —>é O'/
v (o', while e do c od) —! "

v+ {0, while e do c od) —. ¢"

<<«

PL April 17, 2023

The While Loop: caveats

Notice that the above rules are applicable only if all commands are terminating!
In particular,

1. the execution of the whole while loop needs to terminate. For this to happen
it is necessary (though not sufficient) that

2. the execution of the body ¢ also needs to terminate.

<<«

PL April 17, 2023

The effect of side-effects. In the above operational rules we have assumed that expression-evaluation has no side-effects
i.e. there are no changes to the state of the program during or as result of expression evaluation. However many programming
languages allow side-effects to global or non-local variables during expression evaluation. This does not significantly change
the semantics, though it does very significantly change our ability to reason about such programs. In the presence of
side-effects during expression-evalaution the semantics of commands would also changeas we show in the following modified
semantics of commands. In particular we need to carry state information during expression evaluation.

vE(o,e) — (0, ¢)
Assgn0 v {o,z:=m) —! [y(2) = m]o Assgnl v Ao,z :=¢) —! (o' 1 :=¢)
vE{(o,e) — (0 F), vk {(o,e) — (o',T),
CondO v {0, co) —L o9 Cond1 v (o c1) —L o
v+ {o,if e then c; else ¢y fi) —! oy v {0,if e then ¢ else ¢y fiy —} o
vE{(o,e) — (0/,T),
) vE{o,e) —. (o',F) . Y (o) —i o,
While0 v+ {o,while e do c od) —! o Whilel v+ (0", while e do c od) —! "

v+ {o,while ¢ do c od) —! "

The rules of the other constructs viz. skip, blocks and sequencing, remain unchanged.

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 743 OF 778
:| ’ PL April 17, 2023 :

| |

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

744 OF 778

|

17.4. The Operational Semantics of Declarations

| ocal Declarations

We introduce declarations through a new syntactic category Decls defined as

follows:
di,dy,d == int x | booly | di;ds

c o =--- | {d;c}
e Most languages insist on a “declaration before use” discipline,
e Declarations create “little new environments” .
e Need to be careful about whether a variable is at all defined.

e Even if the |-value of a variable is defined, its r-value may not be defined.
The rules for variables and assignments then need to be changed to the
following.

<< | ’ | | ’ > | ’ > > | Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 745 OF 778

PL April 17, 2023

Some changed rules

e We use the symbol | to denote the undefined.
e We use 2z # | to denote that z is well-defined.

X F(oa) —e o0 0@ # L)

Assgn0’

(y(z) # L)

v {o,x:=m) —>}3 v(x) — mlo

’YI_<O-;€> —7e
vy o0 =€) —. (0,0 :=¢

Assgnl’

GoB | ’
| ’ - | ’ < | ’ >> PL April 17, 2023 0 SAK

Declarations: Little Environments

The effect of a declaration is to create a little environment which is pushed
onto the existing environment. The transition relation

—4C ((Env x Stores x Decls) x (Env x Stores))

It =X int 7) —g (e [, [Loy ¢ F Rangelr)

bool =X o bool @) —g (o = I [l Loy (! # Fangey)

| | « | | > L - - | |
PL April 17, 2023

Scope

e The scope of a name begins from its definition and ends where the corre-
sponding scope ends

e Scopes end with definitions of functions

e Scopes end with the keyword end in any 1let ... in ...end or local
in ...end
e Scopes are delimited by brackets “[...|" in (fully-bracketed) A-abstractions.

e We simply use {} to delimit scope

<<

| ’ - | ’ < | ’ >> PL April 17, 2023 AR | ’

Scope Rules
e Scopes may be disjoint

e Scopes may be nested one completely within another

e A scope cannot span two disjoint scopes

e Two scopes cannot (partly) overlap

<<

forward

comer | [s
| ‘ < | ‘ | 4 | ‘ > > PL Apr1/17, 2023 0 DACK ULL SCREEN

CLOSE

| ‘ 749 OF T78

Example 17.7 . Consider the following example ML program which uses declarations in the
development of the algorithm to determine whether a positive integer is perfect.

local
exception invalidArg;

fun ifdivisor3 (n, k) =
if n <= 0 orelse
k <= 0 orelse
n <k
then raise invalidArg
else if n mod k = 0
then k
else O;
fun sum_div2 (n, 1, u) =
if n <= 0 orelse
1 <= 0 orelse

<< | ’ < | ’ | 2 | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 750 OF 778 | [
PL April 17, 2023 ’ :

1l > n_ orelse
u <= 0 orelse

u>n
then raise invalidArg
else if 1 > u
then O
else ifdivisor3 (n, 1)
+ sum_div2 (n, 1+1, u)

in
fun perfect n =

if n <=0
then raise invalidArg

else
let
val nby2 = n div 2
in
< | | < | | > | | -

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

751 OF 778

| [

end

n:
end

sum_div2 (n,

1, nby2)

|

<<

> >

PL April 17, 2023

Go BAck

| |

FuLL SCREEN

| |

CLOSE

| |

752 OF 778

| |

Scope & local

local

in

end

fun funl |y

fun fun3

B

<<

>> PL April 17, 2023

Go Back

FULL SCREEN

CLOSE

753 OF 778

Execution in the Modified Environment

Once a declaration has been processed a new scope 7' is created in which
the new variables are available for use in addition to everything else that was
previously present in the environment 7 (unless it has been “hidden” by the
use of the same name in the new scope). /' is pushed onto ~y to create a new
environment v[y']. For any variable z,

/

v (x) if x € Dom(v)
(@) = § v(z) if 2 € Dom(y) — Dom(y")
1 otherwise

\

v (o, di) —q {(n1,01)
D —Seq v (o1,d2) —q (72, 092)
v (o, dido) —q (71172], 02)

|

Go BAck | ’ LLLLL SCREEN | ’ CLOSE | ’

| ’ b | ’ > | ’ >> | PL April 17, 2023 ’

Semantics of Anonymous Blocks

v (o d) —5 (Y, o)
Block YA E (o, ¢) —% o
v (o, {d;:c}) —c 0" | Dom(o)

Note.

e Note the use of the multi-step transitions on both declarations and com-
mands

e \We have given up on single-step movements, since taking these “big’ -steps
in the semantics is more convenient and less cumbersome

o Note that the “little” environment ~' which was produced by the declaration
d is no longer present on exiting the block.

e On exiting the block the domain of the state returns to Dom(o), shedding
the new locations that were created for the “little” environment.

|

<< | > > > | . ’ Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 755 OF 778
| ’ | ’ | ’ PL April 17, 2023 e !

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

756 OF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

757 OF 778

17.5. The Operational Semantics of Subroutines

Parameterless Subroutines: Named Blocks

The introduction of named blocks allows transfer of control from more control
points than in the case of unnamed blocks.

d17d27d:::"' sub P =c¢
c.=--- | P

e The scope rules remain the same. All names in ¢ refer to the most recent
definition in the innermost enclosing scope of the current scope.

e ¢ may refer to variables that are visible in the static scope of P.

|

<< | ’ | | ’ > | ’ > > . Go BAcK | ’ FULL SCREEN | ’ CLOSE | ’ 758 OF 778
PL April 17, 2023 . :

| |

What does a procedure name represent?

e An anonymous block transforms a store ¢ to another store ¢’

e Each procedure name stands for a piece of code which effectively transforms
the store.

e Unlike an anonymous block which has a fixed position in the code, a named
procedure may be called from several points (representing many different
states).

e Each procedure represents a “state transformer” .

e However under static scope rules, the environment in which a procedure
executes remains fixed though the store may vary.

e Our environment, in addition to having locations should also be able to
associate names with state transformers.

Procy = Stores — Stores

|

<«

— I~ | v X -+
| ’ | | > ’ >>L / | PL April 17, 2023 BAck FuLL SCREEN ’ CLOSE | ’ 759 OF 778

| |

Each procedure declaration sub P = ¢ modifies the environment ~y by associat-
ing the procedure name P with an entity called a procedure closure proc0O(c,),
which represents the body of the procedure and the environment in which it is

to be executed.

DSub0

vF {(o,sub P =c¢) —;4 ([P — proci(c,v)|vy, o)

CSub0

Y1 F (o,¢) —% o

v (o, P) —¢ ([P — proc0(c,)]y, o’

> (7(P) = procO(c, 1))

If P is recursive then we modify the last rule to

CrecSub0

Vo b {o,¢) —% o’

v (o, P) —¢ ([P — procO(c,)]y, o’

> (v(P) = procO(c,v1))

where 7

A" rmmut I

Subroutines with Value Parameters
We consider the case of only a single parameter for simplicity.

di,do,d = --- | sub P(t z) =c | sub P(bool z)=c
cu=-- | Ple)

Procy = Stores — Stores
Proc, = (Stores x (int Ubool)) — Stores
Proc = Procy+ Proc,

Env ={y | v: X — (Loc+ Proc)}

:| ’ << | ’ | | ’ > | ’ > > . Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’
PL April 17, 2023

761 OF 778

Semantics of Call-by-value

DSubv

v {(o,sub P(t) = c¢) —4 ([P — procy(t x,c,v)|y, o)

where t € {int, bool}

v {o,e) —7 v
CrecSubv Yo F{[l = v]o, c) —F o (7(P) = procy(t z,c,71))
v+ (o, P(e)) —¢ 0’ [Dom(a)

where

¢ 2 = [z = [P = v(P),
o/ ¢ Range(y) U Dom(co) and

o y(P) = procy(t x,c,v).

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

Subroutines with Reference Parameters

The Call-by-value parameter passing mechanism requires the evaluation of an
expression for the value parameter to be passed to the procedure. It requires in
addition the allocation of a location to store the value of the actual expression.
This strategy while quite efficient for scalar variables is too expensive when the
parameters are large structures such as arrays and records. In these case it is
more usual to pass merely only a reference to the parameter and ensure that all
modifications to any component of the formal parameter are instantaneously
reflected also in the actual parameter.

We consider the case of a single reference parameter for simplicity. We consider
the case of only a single parameter for simplicity.

di,do,d == --- | sub P(ref t x) =c | sub P(ref bool z)=c
ci=-- | P

Notice that unlike the case of value parameters, the actual parameter in the

|

<alling code can only pass a wariable that is already|present in [its environment.

| |

We augment the definition of Proc to include a new entity viz. Proc,. We
then have

Procy = Stores — Stores

Proc, = (Stores x (int Ubool)) — Stores
Proc, = (Stores x Loc) — Stores

Proc = Procy+ Procy, + Procy

Env ={y | v: X — (Loc+ Proc)}

DSubr

v {o,sub P(t x) = ¢y —4 {|P + procy(t x,c,v)|y, o)
where t € {int, bool}

- ([0, c) —* o
CrecSubr in <0<[P(y>)) HCC 7 (v(P) = procy(t x,c¢,7v1))

where

f“_|zlﬁ/r‘g"|l |\|—’>[‘l ”)ﬁl
i
< > ! X Go BAck | ’ FULL SCREEN | ’ CLOSE | ’
PL April 17, 2023

v

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

765 OF 778

|

<<

>>

PL April 17, 2023

Go BAck

FuLL SCREEN

CLOSE

766 OF 778

18.

Logic Programming and Prolog

Logic Programming

A program is a theory (in some logic) and computation is deduction from the theory.

|

<«

J. A. Robinson

| ’ | | ’ > | ’ > > PL April 17, 2023 Go BAcK | ’ FuLL SCREEN | ’

CLOSE | ’ 767 OF 778

FOL: Reversing the Arrow
Let

pvLyo
Consider any clause C' = {7y,...,mptU{—v1,..., vy} wherem;, 1 <i<p
are positive literals and v, 1 < 5 < n are the negative literals. Since
a clause in FOL with free variables represents the universal closure of the
disjunction of its literals, we have

|

- | ’ h | ’ > | ’ >> PL April 17, 2023 0 Aok | ’

FOL Arrow Reversal
Cev(\ mvi\ v

1<i<p 1<j<n

v\ mv-C A\ vl

1<i<p 1<j<n

=l
e
<
S
T
—
=

CCCCCCCCCCCCCCCC

| ‘ > PL April 17, 2023 | ‘

CCCCC

FOL: Horn Clauses

Definition 18.1: Horn clauses

Given a clause
df
C=m,...,Tp<V],...,Up
e Then C is a Horn clause if 0 < p < 1.
o (' is called a

— program clause or rule clause if p =1,
—fact or unit clause if p =1 and n =0,
—goal clause or query if p =0,

e Each v is called a sub-goal of the goal clause.

<<«

PL April 17, 2023

and is read as “m if 1 and 15 and ..

FOL:
P

Program or Rule Clause

d

Vlm v (\/ ;)

1<j<n

RWANRZ))

1<j<n

= V[r Vv

.and vy, .

<<«

| 4.4

PL April 17, 2023 0 PACK | ’

FOL Facts: Unit Clauses

<<«

| 4.4

df

b=
= V|n«]

PL April 17, 2023

FOL: Goal clauses

Given a goal clause

If y = F'V(vy A ... A\ y) then the goal is to prove that there exists an assign-
ment to ¢ which makes 1 A ... A vy, true.

<<«

PL April 17, 2023

First-order Logic Programs

Definition 18.2: First-order Logic programs

A First-order logic program is a finite set of Horn clauses, i.e. it is
a set of rules P = {hl,...,hk}, k> 0 with hl = 7l u{,...,ufll, for

0<I[<Ek. 7! is called the head of the rule and V{, el V%l is the body

of the rule.

Given a logic program P and a goal clause G = {vy,...,v,} the basic idea is
to show that

P U {G'} is unsatisfiable
< dlyp A -+ Ayl is a logical consequence of P

<<«

PL April 17, 2023

Effectively showing P |= 314 A - -+ A 1,] implies that we need to find values for the variables X = U FV (v;) which ensure
j=1

that P U {G} is unsatisfiable. By Herbrand’s theorem this reduces to the problem of finding substitutions of ground terms

in the Herbrand base for variables in such a manner as to ensure unsatisfiability of P U {G}. This substitution is also called

a correct answer substitution.

We may regard a logic program therefore as a set of postulates of a family of models (represented by a Herbrand model)
and any correct answer substitution that may be derived (through resolution refutation) as a proof of the Goal as a logical
consequence of the postulates. Since resolution refutation is sound and complete we effectively show P F4 3 (1 AN Ay
where F4 denotes a proof by resolution refutation.

A propositional logic program is one in which there are no variables either in P or in the goal clause G and the execution
is a pure application of the rule Res0O to obtain a contradiction.

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 775 OF 778

|

PAD, MW CDME OLD
PHOTOGRAPYS ARE

ALERS BLACY AMD
WHITE™ TIDNT THEY
HBevE Cous® Pt

Wwﬂ?
L
‘ LS
.,,||-|I-1- -

ﬁ. L 7

BUT THEM Wiy ADE RO MECRSSAR,
0D PLNITRES TN B DT CF GRENRT
ool PO THME KETVETS WERE
WORLD ks BLACK, | THSAHE .

AR WHITE, WCRLINT i
BETISTS HANE PRIHT-
0 0T THAT vk =

SuRE THEY DD, 1N FACT,
THOSE LD PHOTCGRAPHS
ARE 1M CouoR, ITS WST
THE REELE WS BLACK

YEP. THE WORLD DIDMYT TuRY
COLOR UNTIL SOMETIME M

B BT O oD
THEY WENE FRINTED
IH CoAoR ARTWA®

0 WHY DDMT
oD BLBCK I'IrlE'1 iRk
MDD WAITE LI

- 5]
WAL, T Al

|

<<

>> PL April 17, 2023

Go BAck | ‘ FuLL SCREEN

CLOSE

776 OF 778

Prolog: EBNF1

<program> ::= <clause list> <query> | <query>
<clause list> ::= <clause> | <clause list> <clause>
<clause> ::= <predicate> . <predicate> :- <predicate list>.
<predicate list> ::= <predicate> |

<predicate list> , <predicate>
<predicate> ::= <atom> | <atom> (<term list>)
<term list> ::= <term> | <term list> , <term>
<term> ::= <numeral> | <atom> | <variable> | <structure>
<structure> ::= <atom> (<term list>)
<query> ::= 7- <predicate list>.

<<«

| ’ | | ’ | | ’ > > PL April 17, 2023 Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 777 OF 778 |

Prolog: EBNF2

<atom> ::= <small atom> | ’ <string> ’
<small atom> ::= <lowercase letter> |
<small atom> <character>
<variable> ::= <uppercase letter> | <variable> <character>
<lowercase letter> ::=a | bl c | ... | x|y | z
<uppercase letter> ::=A | B[C | ... | X | Y| Z | _
<numeral> ::= <digit> | <numeral> <digit>
<digit> ::=0 1112131415161 718109
<character> ::= <lowercase letter> | <uppercase letter> |
<digit> | <special>
<special> ::=+ [= | x| /| N |~ [~ | .| 721 |
18| &

<string> ::= <character> | <string> <character>

| ’ | | ’ | | ’ > > | . ’ Go BAck | ’ FuLL SCREEN | ’ CLOSE | ’ 778 OF 778
PL April 17, 2023

Algorithm

2

while

do (¢

Algorithm 18.1
INTERPRETO (P,) 4

goals # ()
(Choose some goal A € goals
Choose a clause A’ <+ By,...,B,e P: A=A
if A’ does not exist
then exit

\

L else goals := (goals — {A}) U{By,..., By}

if goals =)
then return (yes)
else return (no)
ensures: yes if P F G else no

requires: A propositional logic program P and propositional goal GG

goals = {G}

P | |

Go B
PL April 17, 2023 0 AR

FULL SCREEN

CLOSE

779 OF 778

| [

Algorithm

Algorithm 18.2
d

INTERPRET1 (P, &) 4
(requires: A logic program P and goal G
Standardize variables apart in P U {G}
goalStack = emptyStack
0:=1
push(goal Stack, Q)
while —empty(goalStack)

(A := pop(goalStack)
if 3A’ <~ By,..., By € P :unifiable(A, A')
X 7 := UNIFY (A4, A") //algorithm 77
do < Cie 0:=7100
else exit
if k>0
| then push(goalStack, 0By, ..., 0B)
if empty(goalStack)
then return (¢)
else return (7o)
| ensures: if P G then 0 else no
<<« | ‘ < | ‘ > | ‘ »>> Go Back | ‘ FULL SCREEN | ‘ CLOSE | ‘ 780 OF 778

PL April 17, 2023

| [

ME—E@T

2 E— T
B T—T@D

rA T—D

D —@ @ | O)

ME—E@T

”r E—T
B T—T@D

4 T—D

D—@ @ | ©c=0

-

Figure 5: Derivation trees or Concrete parse trees example 5.3

|

<<

>>

Go B
PL April 17, 2023 0 AR

FuLL SCREEN | ‘ CLOSE

781 OF 778

Figure 6: Abstract syntax tree (AST) for the sentences in fig. 5

B

<<

Go B | |
| | >> PL April 17, 2023 0 PAcK

FULL SCREEN

CLOSE

782 OF 778

Figure 7: Case m > 0 and n > 0

M

/ \
\ /

/\/x
NN

|

<<

> >

Go B
PL April 17, 2023 0 AR

| |

FuLL SCREEN

| |

CLOSE

| |

783 OF 778

| |

	The Programming Languages Overview
	Introduction to Compiling
	Scanning or Lexical Analysis
	Regular Expressions
	Nondeterministic Finite Automata (NFA)
	Deterministic Finite Automata (DFA)

	Parsing or Syntax Analysis
	Grammars
	Context-Free Grammars
	Ambiguity
	The ``dangling else'' problem
	Specification of Syntax: Extended Backus-Naur Form
	The WHILE Programming Language: Syntax
	Parsing
	Recursive Descent Parsing
	A recursive descent parser
	Shift-Reduce Parsing
	Bottom-Up Parsing
	Simple LR Parsing

	Bindings, Attributes & Semantic Analysis
	Context-sensitive analysis and Semantics
	Binding

	(Static) Scope Rules
	Symbol Table
	Runtime Structure
	Abstract Syntax
	Syntax-Directed Translation
	Synthesized Attributes
	Inherited Attributes

	Intermediate Representation
	The Pure Untyped Lambda Calculus: Basics
	Motivation for
	The -notation

	Notions of Reduction
	Recursion and the Y combinator

	Representing Data in the Untyped Lambda Calculus
	Confluence Definitions
	Why confluence?
	Confluence: Church-Rosser
	The Church-Rosser Property

	An Applied Lambda-Calculus
	FL with recursion
	Motivation and Organization
	Static Semantics of FL(X)
	Type-checking FL(X) terms
	The Typing Rules

	Equational Reasoning in FL(X)
	RecFL(X) with type rules

	Formal Semantics of Languages
	l-values, r-values, aliasing and indirect addressing
	The Semantics of Expressions in FL(X)
	The Operational Semantics of Commands
	Loop unrolling
	The Operational Semantics of Declarations
	The Operational Semantics of Subroutines

	Logic Programming and Prolog

