
Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 1 of 778 Quit

Programming Languages

http://www.cse.iitd.ac.in/ s̃ak/courses/pl/2021-22/index.html

S. Arun-Kumar
Department of Computer Science and Engineering

I. I. T. Delhi, Hauz Khas, New Delhi 110 016.

April 17, 2023

http://www.cse.iitd.ac.in/~sak/courses/pl/2021-22/index.html


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 2 of 778 Quit

Contents

1 The Programming Languages Overview 3

2 Introduction to Compiling 25

3 Scanning or Lexical Analysis 46

3.1 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Nondeterministic Finite Automata (NFA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Deterministic Finite Automata (DFA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Parsing or Syntax Analysis 141

4.1 Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2 Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 3 of 778 Quit

4.3 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.4 The “dangling else” problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.5 Specification of Syntax: Extended Backus-Naur Form . . . . . . . . . . . . . . . . . . . . . . 193

4.6 The WHILE Programming Language: Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.7 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

4.8 Recursive Descent Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

4.9 A recursive descent parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.10 Shift-Reduce Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

4.11 Bottom-Up Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

4.12 Simple LR Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

5 Bindings, Attributes & Semantic Analysis 368

5.1 Context-sensitive analysis and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 4 of 778 Quit

5.2 Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

6 (Static) Scope Rules 391

7 Symbol Table 411

8 Runtime Structure 420

9 Abstract Syntax 431

10 Syntax-Directed Translation 447

10.1 Synthesized Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

10.2 Inherited Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

11 Intermediate Representation 501



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 5 of 778 Quit

12 The Pure Untyped Lambda Calculus: Basics 529

12.1 Motivation for λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

12.2 The λ-notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

13 Notions of Reduction 568

13.1 Recursion and the Y combinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

14 Representing Data in the Untyped Lambda Calculus 583

15 Confluence Definitions 594

15.1 Why confluence? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

15.2 Confluence: Church-Rosser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

15.3 The Church-Rosser Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 6 of 778 Quit

16 An Applied Lambda-Calculus 630

16.1 FL with recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

16.2 Motivation and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

16.3 Static Semantics of FL(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

16.3.1 Type-checking FL(X) terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

16.3.2 The Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

16.4 Equational Reasoning in FL(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

16.5 ΛRecFL(X) with type rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676

17 Formal Semantics of Languages 694

17.0.1 l-values, r-values, aliasing and indirect addressing . . . . . . . . . . . . . . . . . . . . . 700

17.1 The Semantics of Expressions in FL(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

17.2 The Operational Semantics of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 7 of 778 Quit

17.3 Loop unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

17.4 The Operational Semantics of Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

17.5 The Operational Semantics of Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

18 Logic Programming and Prolog 762



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 8 of 778 Quit

1. The Programming Languages Overview



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 9 of 778 Quit

What is a Programming Language?

• A (lineara) notation for the precise, accurate and complete description of
algorithms and data-structures implementable on a digital computer.

• In contrast,

– the usual mathematical notation is accurate and precise enough for human
beings but is not necessarily implementable on a digital computer,

– and often the usual mathematical notation is not linear (think of integrals
or matrices).

– pseudo-code for algorithms and data-structures is too abstractb to be
directly executed on a digital computer or even a virtual computer.

• A program is a sentence in a programming language intended to describe
algorithms designed for a universal computing machine.

• While algorithms terminate not all programs may terminate.
ai.e. a sequence of characters
bToo many implementation details are either left unspecified or implicit.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 10 of 778 Quit

The World of PLs

• There are just too many actual programming languages and more are being
designed every year. Impossible to master every new PL that is released.

•Often impossible to master every feature of even the PLs that are currently
in use.

•Often not necessary to master all features of a PL.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 11 of 778 Quit

Why Study the subject of PL? - 1

To understand the various major paradigms of programming.

• The same algorithm requires different design considerations in different
paradigms.

•Different data-structures as part of the language,
•Different libraries provided along with the language implementation.

•Different styles of thought involved in the implementation.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 12 of 778 Quit

Why Study the subject of PL? - 2

To understand the major features and their implementation common to large
numbers of PLs.

• The same feature may be implemented differently in different PLs.

• The same algorithm is written differently in different PLs of the same
paradigm depending upon

– the data-structures available,

– the control structures available,

– the libraries available.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 13 of 778 Quit

Why Study the subject of PL? - 3

To understand the major design and architectural considerations common to
most PLs.

•Whether a data- or control-structure is part of the programming language
itself.

•Whether certain complex (data- and control-)structures are provided as li-
braries of the programming language.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 14 of 778 Quit

Architectural Considerations in PL

• Compilation vs Interpretation

• Portability considerations across hardware architectures
• Virtual machines or target architectures.
• Stack architecture vs. register architecture.

• Representation and typing.

• The set of intermediate languages/representation required for the implemen-
tation.

• Support for parallelism.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 15 of 778 Quit

Programs: Source to Runs

Compiler/

Interpreter Linker Loader
Runtime

System

Macro−

processor

IR
Target
code Results

Source

Compilation

Errors

Linking
Errors

Loading 

Errors
Runtime

Errors

Errors

Macro−translation

Translated

Source

IR

Linked

Pre−processor

Pre−processing

Errors



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 16 of 778 Quit

Programs: Source to Runs-2

Compiler/

Interpreter Linker Loader
Runtime

System

Macro−

processor

IR Results

Source

Compilation

Errors

Linking
Errors

Runtime

Errors

Errors

Macro−translation

IR

Linked

Pre−processor

Pre−processing

Errors

Loading 

Source

Translated

Errors

code
Assembly

Assembler

Errors

Assembling

code
Machine



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 17 of 778 Quit

Programs: Source to Runs-1: LATEX

Compiler/

Interpreter Linker

processor

IR

Source

Compilation

Errors

Linking
Errors

Errors

Macro−translation

Source

IR

Linked

Pre−processor

Pre−processing

Errors

nw
.texlatex

noweave

notangle

Source Program

Macro−

LaTeX

nw source

latex source

latex source

Translated TeX

TeX

TeX dvi

dvi2pdf

dvi2ps

ps 

pdf

or

Display

Printer
Output

Postscript

Processor

Target

printer

code

Print

Render



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 18 of 778 Quit

Programs: Source to Runs-2: LATEX

Compiler/

Interpreter Linker

processor

IR

Source

Compilation

Errors

Linking
Errors

Errors

Macro−translation

Source

IR

Linked

Pre−processor

Pre−processing

Errors

nw
.texlatex

noweave

notangle

Source Program

Macro−

LaTeX

nw source

latex source

latex source

Translated TeX

TeX

TeX dvi

dvi2pdf

dvi2ps

ps 

pdf

or

Display

Printer
Output

Postscript

Processor

Target

printer

code

Print

Render

Printer

Display



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 19 of 778 Quit

Programs: Source to Runs: Java

Compiler/

Interpreter Linker Loader
Runtime

System

IR
Target
code Results

Source

Compilation

Errors

Linking
Errors

Loading 

Errors
Runtime

Errors

IR

Linked
.java

.class

bytecode
Java Java Virtual Machine (JVM)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 20 of 778 Quit

The Landscape of General PLs



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 21 of 778 Quit

The Usage of General PLs
Scientific & Numerical Computations

Business Data Processing

Structured Programming

Symbolic computation
Theorem Proving

Teaching

Systems
Programming

Symbolic

Symbol processing

Expert
Systems

Simulation

Reactive
   Systems

Rendering &
Printing

Reporting

Web programming

Modular
Progrmg

Theorem pro

Model-checking



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 22 of 778 Quit

The Major Features of General PLs
7XEXMG�1IQSV]�EPPSG�
7XEXMG�WGSTMRK
9RX]TIH

(]REQMG�QIQSV]�EPPSG�
(]REQMG�WGSTI
(]REQMG�1IQSV]�EPPSG�

7XEXMGEPP]�WGSTIH

(]REQMG�WGSTI
(]REQMG�1IQSV]�EPPSGEXMSR

7XEXMG�WGSTI

7XEXMG�WGSTI
,IET�EPPSG
7XVSRK�X]TMRK
6YRXMQI�WXEGO

6YRXMQI�WXEGO
,IET�EPPSG�

(]REQMG�EPPSG
,IET�EPPSG

7XEXMG�WGSTI
7XEXMG�X]TIW
6YRXMQI�WXEGO
,IET�EPPSG�

7XEXMG�WGSTI
6YRXMQI�WXEGO
,IET�EPPSG�

YRX]TIH

7XEXMG�X]TI



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 23 of 778 Quit

FORTRAN

• The very first high-level programming language

• Still used in scientific computation

•Did not allow recursion

• Static memory allocation (since no recursion was allowed)

• Very highly compute oriented
• Runs very fast because of static memory allocation
• Parameter passing by reference



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 24 of 778 Quit

COBOL

• A business oriented language

•Did not allow recursion

• Extremely verbose
• Very highly input-oriented
•Meant to manage large amounts of data on disks and tapes and generate
reports

• Not computationally friendly



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 25 of 778 Quit

LisP

• First functional programming language

• Recursion allowed and extensively used

• Introduced lists and list-operations as the only data-structure

• Introduced symbolic computation

•Much favoured for AI and NLP programming for more than 40 years

• The first programming language whose interpreter could be written in itself.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 26 of 778 Quit

ALGOL-60

• Introduced the Backus-Naur Form (BNF) for specifying the syntax of a
programming langauge

• Formal syntax defined by BNF (an extension of context-free grammars)

• First imperative language to implement recursion

• Introduction of block-structure and nested scoping

•Dynamic memory allocation
• Introduced the call-by-name parameter passing mechanism



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 27 of 778 Quit

Pascal

• ALGOL-like language meant for teaching structured programming

• Introduction of new data structures – records, enumerated types, sub-range
types, recursive data-types

• Its simplicity led to its “dialects” being adopted for expressing algorithms in
pseudo-code

• First language to be ported across a variety of hardware and OS platforms –
introduced the concepts of virtual machine and intermediate code (bytecode)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 28 of 778 Quit

ML

• First strongly and statically typed functional programming language

• Created the notion of an inductively defined type to construct complex types
• Parametric polymorphism allowing code reuse and type-instantiation.

• Powerful pattern matching facilities on complex data-types.

• Introduced type-inference, thus making declarations unnecessary except in
special cases

• Its module facility is inspired by the algebraic theory of abstract data types

• The first language to introduce functorial programming between algebraic
structures and modules



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 29 of 778 Quit

Prolog

• First declarative programming language

• Uses the Horn clause subset of first-order logic

• Goal-oriented programming implementing a top-down methodology

• Implements backtracking as a language feature

• Powerful pattern-matching facilities like in functional programming

• Various dialects implement various other features such as constraint pro-
gramming, higher-order functions etc.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 30 of 778 Quit

2. Introduction to Compiling



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 31 of 778 Quit

Introduction to Compiling

• Translation of programming languages into executable code

• But more generally any large piece of software requires the use of compiling
techniques.

• The processes and techniques of designing compilers is useful in designing
most large pieces of software.

• Compiler design uses techniques from formal language theory, automata
theory, data structures and algorithms and computability theory.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 32 of 778 Quit

Software Examples

Some examples of other software that use compiling techniques

• Almost all user-interfaces require scanners and parsers to be used.

• All XML-based software require interpretation that uses these techniques.

• All mathematical text formatting requires the use of scanning, parsing and
code-generation techniques (e.g. LATEX).

•Model-checking and verification software are based on compiling techniques

• Synthesis of hardware circuits requires a description language and the final
code that is generated is an implementation either at the register-transfer
level or gate-level design.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 33 of 778 Quit

Books and References

1.Appel A W. Modern Compiler Implementation in Java Cambridge
University Press, Revised Indian Paperback edition 2001

2.Aho A V, Sethi R, Ullman J D. Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley 1986.

3.Muchnick S S. Advanced Compiler Design and Implementation, Aca-
demic Press 1997.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 34 of 778 Quit

A Plethora of Languages: Compiling

In general a compiler/interpreter for a a source language S written in
some language C translates code written in S to a target language T .
Source S
Target T
Language of the compiler/interpreter C
Our primary concern. Compiling from a high-level source programming
language to a target language using a high-level language C.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 35 of 778 Quit

A Plethora of Languages: Source

The Source language S could be

• a programming language, or

• a description language (e.g. Verilog, VHDL), or

• a markup language (e.g. XML, HTML, SGML, LATEX) or

• even a “mark-down” language to simplify writing code.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 36 of 778 Quit

A Plethora of Languages: Target

The Target language T could be

• an intermediate language (e.g. ASTs, IR, bytecode etc.)

• another programming language, assembly language or machine language, or

• a language for describing various objects (circuits etc.), or

• a low level language for execution, display, rendering etc. or

• even another high-level language.

https://en.wikipedia.org/wiki/Bytecode


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 37 of 778 Quit

The Compiling Process

Besides S, C and T there could be several other intermediate languages
I1, I2, . . . (also called intermediate representations) into which the
source program could be translated in the process of compiling or interpret-
ing the source programs written in S. In modern compilers, for portability,
modularity and reasons of code improvement, there is usually at least one
intermediate representation.
Some of these intermediate representations could just be data-types of a mod-
ern functional or object-oriented programming language.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 38 of 778 Quit

Compiling as Translation

Except in the case of a source to source translation (for example, a Pascal to C
translator which translates Pascal programs into C programs), we may think of
the process of compiling high-level languages as one of transforming programs
written in S into programs of lower-level languages such as the intermediate
representation or the target language. By a low-level language we mean that
the language is in many ways closer to the architecture of the target language.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 39 of 778 Quit

Phases of a Compiler

A compiler or translator is a fairly complex piece of software that needs to be
developed in terms of various independent modules.

In the case of most programming languages, compilers are designed in phases.

The various phases may be different from the various passes in compilation.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 40 of 778 Quit

Phases vs. Passes

Several phases may be combined into a single pass, which essentially means
that even though we describe the phases as the different transformations the
whole source program undergoes, in reality various phases can be undertaken
in a single pass with partial or incomplete information about the whole source
program.

Most modern programming languages are designed so that a compiler for th
elanguage does not require more than 2 passes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 41 of 778 Quit

The Big Picture: 1

SCANNER

stream of
characters

stream of
tokens



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 42 of 778 Quit

The Big Picture: 2

SCANNER

PARSER

stream of
characters

stream of
tokens

parse tree



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 43 of 778 Quit

The Big Picture: 3

SCANNER

PARSER

SEMANTIC ANALYZER

stream of
characters

stream of
tokens

parse tree

abstract
syntax tree



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 44 of 778 Quit

The Big Picture: 4

SCANNER

PARSER

SEMANTIC ANALYZER

I.R. CODE GENERATOR

stream of
characters

stream of
tokens

parse tree

intermediate
representation

abstract
syntax tree



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 45 of 778 Quit

The Big Picture: 5

SCANNER

PARSER

SEMANTIC ANALYZER

I.R. CODE GENERATOR

OPTIMIZER

stream of
characters

stream of
tokens

parse tree

intermediate
representation

optimized
intermediate
representation

abstract
syntax tree



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 46 of 778 Quit

The Big Picture: 6

SCANNER

PARSER

SEMANTIC ANALYZER

I.R. CODE GENERATOR

OPTIMIZER

CODE GENERATOR

stream of
characters

stream of
tokens

parse tree

intermediate
representation

optimized
intermediate
representation

target code

abstract
syntax tree



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 47 of 778 Quit

The Big Picture: 7

SCANNER

PARSER

SEMANTIC ANALYZER

I.R. CODE GENERATOR

OPTIMIZER

CODE GENERATOR

ERROR−

HANDLER

SYMBOL

TABLE

MANAGER

stream of
characters

stream of
tokens

parse tree

intermediate
representation

optimized
intermediate
representation

target code

abstract
syntax tree



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 48 of 778 Quit

The Big Picture: 8

SCANNER

PARSER

SEMANTIC ANALYZER

I.R. CODE GENERATOR

OPTIMIZER

CODE GENERATOR

ERROR−

HANDLER

SYMBOL

TABLE

MANAGER

stream of
characters

stream of
tokens

parse tree

intermediate
representation

optimized
intermediate
representation

target code

abstract
syntax tree

Scanner Parser Semantic Analysis Symbol Table
IR Run-time structure



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 49 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 50 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 51 of 778 Quit

3. Scanning or Lexical Analysis

Lexical Analysis



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 52 of 778 Quit

Programming Language Elements

• Every language is built from a finite alphabet of symbols. The alphabet
of a programming language (nowadays) consists of the symbols of the ASCII
character seta.

• Each language has a vocabulary consisting of words. Each word is a
string of (printable non-whitespace) symbols drawn from the alphabet.

• Each language has a finite set of punctuation symbols, which separate
phrases, clauses and sentences.

• A programming language also has a finite set of operators.

• The phrases, clauses and sentences of a programming language are expres-
sions, commands, functions, procedures and programs.

aPreviously there were others such as BCD and EBCDIC which are no longer used.

https://ascii-tables.com/
https://en.wikipedia.org/wiki/BCD_(character_encoding)
https://en.wikipedia.org/wiki/EBCDIC


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 53 of 778 Quit

Lexical Analysis

lex-i-cal: relating to words of a language

• A source program (usually a file) consists of a stream of characters.

• Given a stream of characters that make up a source program the compiler
must first break up this stream into a sequence of “lexemes”, and other
symbols.

• Each such lexeme is then classified as belonging to a certain token type.

• Certain lexemes may violate the pattern rules for tokens and are considered
erroneous.

• Certain sequences of characters are nota tokens and are completely ignored
(or skipped) by the compiler.

aE.g. comments



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 54 of 778 Quit

Erroneous lexemes

Some lexemes violate all rules of tokens. Some examples common to most
programming languages

• 12ab would not be an identifier or a number in most programming languages.
If it were an integer in Hex code it would be written 0x12ab.

• 127.0.1 is usually not any kind of number. However 127.0.0.1 may be a
valid token representing an IP address.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 55 of 778 Quit

Tokens and Non-tokens: 1

• Tokens
• Non-tokens



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 56 of 778 Quit

Tokens and Non-tokens: 2

Tokens. Typical tokens are

•Constants: Integer, Boolean, Real, Character and String constants.

• Identifiers: Names of variables, constants, procedures, functions etc.
•Keywords/Reserved words: void, public, main

•Operators:+, *, /

•Punctuation: ,, :, .

•Brackets: (, ), [, ], begin, end, case, esac

Non-tokens



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 57 of 778 Quit

Tokens and Non-tokens: 3

Tokens

Non-tokens. Typical non-tokens are

•whitespace: sequences of tabs, spaces, new-line characters,

• comments: compiler ignores comments

• preprocessor directives: #include ..., #define ...

•macros in the beginning of C programs



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 58 of 778 Quit

Scanning: 1

During the scanning phase the compiler/interpreter

• takes a stream of characters and identifies tokens from the lexemes.

• Eliminates comments and redundant whitepace.

• Keeps track of line numbers and column numbers and passes them as pa-
rameters to the other phases to enable error-reporting and handling to the
user.

https://en.wikipedia.org/wiki/White_space


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 59 of 778 Quit

Scanning: 2

Definition 3.1 A lexeme is a basic lexical unit of a language consisting of
one word or several words, the elements of which do not separately convey the
meaning of the whole.

•Whitespace: A sequence of space, tab, newline, carriage-return, form-feed
characters etc.

• Lexeme: A sequence of non-whitespace characters delimited by whitespace
or special characters (e.g. operators or punctuation symbols)

• Examples of lexemes.
– reserved words, keywords, identifiers etc.

– Each comment is usually a single lexeme

– preprocessor directives



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 60 of 778 Quit

Scanning: 3

Definition 3.2 A token consists of an abstract name and the attributes of a
lexeme.

• Token: A sequence of characters to be treated as a single unit.

• Examples of tokens.
– Reserved words (e.g. begin, end, struct, if etc.)

– Keywords (integer, true etc.)

–Operators (+, &&, ++ etc)

– Identifiers (variable names, procedure names, parameter names)

– Literal constants (numeric, string, character constants etc.)

– Punctuation marks (:, , etc.)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 61 of 778 Quit

Scanning: 4

• Identification of tokens is usually done by a Deterministic Finite-state au-
tomaton (DFA).

• The set of tokens of a language is represented by a large regular expression.

• This regular expression is fed to a lexical-analyser generator such as Lex,
Flex or JLex.

• A giant DFA is created by the Lexical analyser generator.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 62 of 778 Quit

Lexical Rules

• Every programming language has lexical rules that define how a token is
to be defined.

Example. In most programming languages identifiers satisfy the following
rules.

1. An identifier consists of a sequence of of letters (A . . . Z, a . . . z), digits
(0 . . . 9) and the underscore ( ) character.

2. The first character of an identifier must be a letter.

• Any two tokens are separated by some delimiters (usually whitespace) or
non-tokens in the source program.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 63 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 64 of 778 Quit

3.1. Regular Expressions

Regular Expressions



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 65 of 778 Quit

Consider the string 11/12/2021? What does this string of characters represent? There are at least the following different
possibilities.

• In a school mathematics text it might represent the operation of division (11/12)/2021, i.e the fraction 11/12 divided
by 2021, yielding the value .00045357083951839023.

• To a student who is confused, it may also represent the operation of division 11/(12/2021) i.e. the result of dividing 11
by the fraction 12/2021 yielding the value 1852.58333333333333569846.

• In some official document from India it might represent a date (in dd/mm/yyyy format) viz. 11 December 20211.

• In some official document from America it might represent a different date (in mm/dd/yyyy format) viz. November 12,
20212.

The ambiguity inherent in such representations requires that (especially if the school mathematics text also uses some date
format in some problems) a clearer specification of the individual elements be provided. These specifications of individual
elements in programming languages are provided by lexical rules. These lexical rules specify “patterns” which are legal for
use in the language.

1Have you heard of the 26/11 attack?
2Have you heard of the 9/11 attack?

https://www.youtube.com/watch?v=lAoTnw416Lo
https://www.youtube.com/watch?v=GySgEL4NRFY


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 66 of 778 Quit

Specifying Lexical Rules

We require compact and simple ways of specifying the lexical rules of the tokens
of a language. In particular,

• there are an infinite number of legally correct identifiers (names) in any
programming language.

• we require finite descriptions/specifications of the lexical rules so that
they can cover the infinite number of legal tokens.

One way of specifying the lexical rules of a programming language is to use
regular expressions.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 67 of 778 Quit

Regular Expressions Language

• Any set of strings built up from the symbols of A is called a language. A∗
is the set of all finite strings built up from A.

• Each regular expression is a finite sequence of symbols made up of
symbols from the alphabet and other symbols called operators.

• A regular expression may be used to describe an infinite collection of
strings.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 68 of 778 Quit

Regular Expressions for Identifiers

Example 3.3 The regular expression used to define the set of possible identi-
fiers as defined by the rules is

[A− Za− z][A− Za− z0− 9 ]∗

• The letters and digits in bold blue and denote symbols drawn from the
alphabet, consisting of lower-case, upper-case letters, digits and .

• The other symbols in blue — the brackets “ [ ”, “ ] ”, hyphen “−” and
asterisk “ ∗” — are operator symbols of the language of regular expressions.

• The hyphen operator “−” allows for range specifications in the ASCII al-
phabet.

• The asterisk “ ∗” specifies “0 or more occurrences” of the symbols within
the brackets.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 69 of 778 Quit

Concatenations

Consider a (finite) alphabet (of symbols) A.

• Given any two strings x and y in a language, x.y or simply xy is the con-
catenation of the two strings.

Example 3.4 Given the strings x = Mengesha and y = Mamo, x.y =
MengeshaMamo and y.x = MamoMengesha.

• Given two languages X and Y , then X.Y or simply XY is the concate-
nation of the languages.

Example 3.5 Let X = {Mengesha, Gemechis} and Y =
{Mamo, Bekele, Selassie}. Then
XY = {MengeshaMamo, MengeshaBekele, MengeshaSelassie,
GemechisMamo, GemechisBekele, GemechisSelassie}



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 70 of 778 Quit

Note on the Concept of “language”.

Unfortunately we have too many related but slightly different concepts, each of which is simply called a

“language”. Here is a clarification of the various concepts that we use.

• Every language has a non-empty finite set of symbols called letters. This non-empty finite set is called

the alphabet.

• Each word is a finite sequence of symbols called letters.

• The words of a language usually constitute its vocabulary. Certain sequences of symbols may not form

a word in the vocabulary. A vocabulary for a natural language is defined by a dictionary, whereas for a

programming language it is usually defined by formation rules.

• A phrase, clause or sentence is a finite sequence of words drawn from the vocabulary.

• Every natural language or programming language is a finite or infinite set of sentences.

• In the case of formal languages, the formal language is the set of words that can be formed using the

formation rules. The language is also said to be generated by the formation rules.

There are a variety of languages that we need to get familiar with.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 71 of 778 Quit

Natural languages. These are the usual languages such as English, Hindi, French, Tamil which we employ

for daily communication and in teaching, reading and writing.

Programming languages. These are the languages such as C, Java, SML, Perl, Python etc. that are used

to write computer programs in.

Formal languages. These are languages which are generated by certain formation rules.

Meta-languages. These are usually natural languages used to explain concepts related to programming

languages or formal languages. We are using English as the meta-language to describe and explain concepts

in programming languages and formal languages.

In addition, we do have the concept of a dialect of a natural language or a programming language. For

example the natural languages like Hindi, English and French do have several dialects. A dialect (in the case

of natural languages) is a particular form of a language which is peculiar to a specific region or social group.

Creole (spoken in Mauritius) is a dialect of French, Similarly Brij, Awadhi are dialects of Hindi. A dialect

(in the case of programming languages) is a version of the programming language. There are many dialects of

C and C++. Similarly SML-NJ and poly-ML are dialects of Standard ML. The notion of a dialect does not

really exist for formal languages.

https://www.google.co.in/search?q=meaning+dialect&oq=meaning+dialect&aqs=chrome.0.0l6.3590j1j7&sourceid=chrome&ie=UTF-8


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 72 of 778 Quit

Closer home to what we are discussing, the language of regular expressions is a formal language which describes

the rules for forming the words of a programming language. Each regular expression represents a finite or infinite

set of words in the vocabulary of a programming language. We may think of the language of regular expressions

also as a functional programming language for describing the vocabulary of a programming language. It allows

us to generate words belonging to the vocabulary of a programming language

Any formally defined language also defines an algebraic system of operators applied on a carrier set. Every
operator in any algebraic system has a pre-defined arity which refers to the number of operands it requires.
In the case of regular expressions, the operators are concatenation and alternation are 2-ary operators (binary
operators), whereas the Kleene closure and plus closure are 1-ary operators (unary). In addition the letters of
the alphabet, which are constants may be considered to be operators of arity 0.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 73 of 778 Quit

Simple Language of Regular Expressions

We consider a simple language of regular expressions. Assume a
(finite) alphabet A of symbols. Each regular expression r denotes a set of strings
L(r). L(r) is also called the language specified by the regular expression r.

Symbol. For each symbol a in A, the regular expression a denotes the set
{a}.

(Con)catenation. For any two regular expressions r and s, r.s or simply rs
denotes the concatenation of the languages specified by r and s. That is,

L(rs) = L(r)L(s)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 74 of 778 Quit

Epsilon and Alternation

Epsilon. ϵ denotes the language with a single element the empty string ε
or ("").

L(ϵ) = {ε} = {""}
Alternation. Given any two regular expressions r and s, r|s is the set union

of the languages specified by the individual expressions r and s respectively.

L(r | s) = L(r) ∪ L(s)
Example L(Menelik|Selassie|ϵ) = {Menelik, Selassie, ε}.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 75 of 778 Quit

String Repetitions

For any string x, we may use concatenation to create a string y with as many
repetitions of x as we want, by defining repetitions by induction.

x0 = ””

x1 = x

x2 = x.x
...

xn+1 = x.xn = xn.x
...

Then
x∗ = {xn | n ≥ 0}



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 76 of 778 Quit

String Repetitions Example

Example. Let x = Selassie. Then

x0 = ””

x1 = Selassie

x2 = SelassieSelassie
...

x5 = SelassieSelassieSelassieSelassieSelassie
...

Then x∗ is the language consisting of all strings that are finite repetitions of
the string Selassie



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 77 of 778 Quit

Language Iteration

The ∗ operator can be extended to languages in the same way. For any
language X , we may use concatenation to create a another language Y with
as many repetitions of the strings in X as we want, by defining repetitions by
induction. Hence if X is nonempty, then we have

X0 = {””} X1 = X

X2 = X.X X3 = X2.X
...

...

In general Xn+1 = X.Xn = Xn.X and
X∗ =

⋃
n≥0

Xn



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 78 of 778 Quit

Language Iteration Example

Example 3.6 Let X = {Mengesha, Gemechis}. Then
X0 = {””}
X1 = {Mengesha, Gemechis}
X2 = {MengeshaMengesha, GemechisMengesha,

MengeshaGemechis, GemechisGemechis}
X3 = {MengeshaMengeshaMengesha, GemechisMengeshaMengesha,

MengeshaGemechisMengesha, GemechisGemechisMengesha,
MengeshaMengeshaGemechis, GemechisMengeshaGemechis,
MengeshaGemechisGemechis, GemechisGemechisGemechis}

...



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 79 of 778 Quit

Kleene Closure

Given a regular expression r, rn specifies the n-fold iteration of the language
specified by r.
Given any regular expression r, theKleene closure of r, denoted r∗ specifies
the language (L(r))∗.
In general

r∗ = r0 | r1 | · · · | rn+1 | · · ·
denotes an infinite union of languages.
Further it is easy to show the following identities.

r∗ = ϵ|r.r∗ (1)

r∗ = (r∗)∗ (2)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 80 of 778 Quit

Plus Closure

The Kleene closure allows for zero or more iterations of a language. The
+-closure of a language X denoted by X+ and defined as

X+ =
⋃
n>0

Xn

denotes one or more iterations of the language X .
Analogously we have that r+ specifies the language (L(r))+.
Notice that for any language X , X+ = X.X∗ and hence for any regular
expression r we have

r+ = r.r∗

We also have the identity (1)
r∗ = ϵ | r+



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 81 of 778 Quit

Range Specifications

We may specify ranges of various kinds as follows.

• [a− c] = a | b | c. Hence the expression of Question 3 may be specified
as [a− c]∗.

•Multiple ranges: [a− c0− 3] = [a− c] | [0− 3]



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 82 of 778 Quit

Exercise 3.1

1. If X = ∅ what are X0, Xn for n > 0 and X∗?

2. Try to understand what the regular expression for identifiers really specifies.

3. Modify the regular expression so that all identifiers start only with upper-case letters.

4. Give regular expressions to specify

• real numbers in fixed decimal point notation

• real numbers in floating point notation

• real numbers in both fixed decimal point notation as well as floating point notation.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 83 of 778 Quit

Equivalence of Regular Expressions

Definition 3.7 Let REGEXPA denote the set of regular expressions over a
a finite non-empty set of symbols A and let r, s ∈ REGEXPA. Then
• r ≦A r if and only if L(r) ⊆ L(s) and
• they are equivalent (denoted r =A s) if they specify the same language,
i.e.

r =A s if and only if L(r) = L(s)
We have already considered various identities (e.g. (1)) giving the equivalence
between different regular expressions.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 84 of 778 Quit

Notes on bracketing and precedence of operators

In general regular expressions could be ambiguous (in the sense that the same expression may be interpreted to refer to
different languages. This is especially so in the presence of

• multiple binary operators

• some unary operators used in prefix form while some others are used in post-fix form. The Kleene-closure and plus
closure are operators in postfix form. We have not introduced any prefix unary operator in the language of regular
expressions.

All expressions may be made unambiguous by specifying them in a fully parenthesised fashion. However, that leads to
too many parentheses and is often hard to read. Usually rules for precedence of operators is defined and we may use the
parentheses “(“ and “)” to group expressions over-riding the precedence conventions of the language.

For the operators of regular expressions we will use the precedence convention that | has a lower precedence than . and that
all unary operators have the highest precedence.

Example 3.8 The language of arithmetic expressions over numbers uses the “BDMAS” convention that brackets have the
highest precedence, followed by division and multiplication and the operations of addition and subtraction have the lowest
precedence.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 85 of 778 Quit

Example 3.9 The regular expression r.s|t.u is ambiguous because we do not know beforehand whether it represents (r.s)|(t.u)
or r.(s|t).u or even various other possibilities. By specifying that the operator | has lower precedence than . we are disam-
biguating the expression to mean (r.s)|(t.u).

Example 3.10 The language of arithmetic expressions can also be extended to include the unary post-fix operation in which
case an expression such as −a! becomes ambiguous. It could be interpreted to mean either (−a)! or −(a!). In the absence of
a well-known convention it is best adopt parenthesisation to disambiguate the expression.

Besides the ambiguity created by multiple binary operators, there are also ambiguities created by the same operator and in
deciding in what order two or more occurrences of the same operator need to be evaluated. A classic example is the case of
subtraction in arithmetic expressions.

Example 3.11 The arithmetic expression a − b − c, in the absence of any well-defined convention could be interpreted to
mean either (a− b)− c or a− (b− c) and the two interpretations would yield different values in general. The problem does
not exist for operators such addition and multiplication on numbers, because these operators are associative. Hence even
though a+ b+ c may be interpreted in two different ways, both interpretations yield identical values.

Example 3.12 Another non-associative operator in arithmetic which often leaves students confused is the exponentiation
operator. Consider the arithmetic expression ab

c

. For a = 2, b = 3, c = 4 is this expression to be interpreted as a(b
c) or as

(ab)c?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 86 of 778 Quit

Exercise 3.2

1. For what regular expression r will r∗ specify a finite set?

2. How many strings will be in the language specified by (a | b | c)n?
3. Give an informal description of the language specified by (a | b | c)∗?
4. Give a regular expression which specifies the language {ak | k > 100}.
5. Simplify the expression r∗.r∗, i.e. give a simpler regular expression which specifies the same language.

6. Simplify the expression r+.r+.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 87 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 88 of 778 Quit

3.2. Nondeterministic Finite Automata (NFA)

Nondeterministic Finite Automata (NFA)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 89 of 778 Quit

Nondeterministic Finite Automata

A regular expression is useful in defining a finite state automaton. An automa-
ton is a machine (a simple program) which can be used to recognize any valid
lexical token of a language.
A nondeterministic finite automaton (NFA) N over a finite alphabet
A consists of

• a finite set Q of states,

• an initial state q0 ∈ Q,
• a finite subset F ⊆ Q of states called the final states or accepting
states, and

• a transition relation −→⊆ Q× (A ∪ {ε})×Q.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 90 of 778 Quit

What is nondeterminstic?

• The transition relation may be equivalently represented as a function

−→: Q× (A ∪ {ε})→ 2
Q

that for each source state q ∈ Q and symbol a ∈ A associates a set of
target states.

• It is non-deterministic because for a given source state and input symbol,

– there may not be a unique target state, there may be more than one, or

– the set of target states could be empty.

• Another source of non-determinism is the empty string ε.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 91 of 778 Quit

Nondeterminism and Automata

• In general the automaton reads the input string from left to right.

• It reads each input symbol only once and executes a transition to new state.

• The ε transitions represent going to a new target state without reading any
input symbol.

• The NFA may be nondeterministic because of

– one or more ε transitions from the same source state different target
states,

– one or more transitions on the same input symbol from one source state
to two or more different target states,

– choice between executing a transition on an input symbol and a transition
on ε (and going to different states).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 92 of 778 Quit

Acceptance of NFA

• For any alphabet A, A∗ denotes the set of all (finite-length) strings of symbols
from A.

• Given a string x = a1a2 . . . an ∈ A∗, an accepting sequence is a se-
quence of transitions

q0
ε−→ · · · a1−→ ε−→ · · · q1 ε−→ · · · a2−→ · · · ε−→ an−→ ε−→ · · · qn

where qn ∈ F is an accepting state.

• Since the automaton is nondeterministic, it is also possible that there exists
another sequence of transitions

q0
ε−→ · · · a1−→ ε−→ · · · q′1

ε−→ · · · a2−→ · · · ε−→ an−→ ε−→ · · · q′n
where q′n is not a final state.

• The automaton accepts x, if there is an accepting sequence for x.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 93 of 778 Quit

Language of a NFA

• The language accepted or recognized by a NFA is the set of strings that
can be accepted by the NFA.

•L(N) is the language accepted by the NFA N .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 94 of 778 Quit

Construction of NFAs

•We show how to construct an NFA to accept a certain language of strings
from the regular expression specification of the language.

• The method of construction is by induction on the structure of the regular
expression. That is, for each regular expression operator, we show how to
construct the corresponding automaton assuming that the NFAs correspond-
ing to individual components of expression have already been constructed.

• For any regular expression r the corresponding NFA constructed is denoted
Nr. Hence for the regular expression r|s, we construct the NFA Nr|s using
the NFAs Nr and Ns as the building blocks.

•Our method requires only one initial state and one final state for each au-
tomaton. Hence in the construction of Nr|s from Nr and Ns, the initial
states and the final states ofNr andNs are not initial or final unless explicitly
used in that fashion.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 95 of 778 Quit

Constructing NFA

•We show the construction only for the most basic operators on regular ex-
pressions.

• For any regular expression r, we construct a NFA Nr whose initial state is
named r0 and final state rf .

• The following symbols show the various components used in the depiction
of NFAs.

Initial state

Accepting state

a Typical transition

0 fr rrN
Typical NFA for r



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 96 of 778 Quit

Regular Expressions to NFAs:1

a

Na
0
a

f
a

We may also express the automaton in tabular form as follows:

Na Input Symbol
State a · · · ε

a0 {af} ∅ · · · ∅ ∅
af ∅ ∅ · · · ∅ ∅

Notice that all the cells except one have empty targets.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 97 of 778 Quit

Regular Expressions to NFAs:2

ε

Nεεε
0 f

Nε Input Symbol
State a · · · ε

ε0 ∅ ∅ · · · ∅ {εf}
εf ∅ ∅ · · · ∅ ∅



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 98 of 778 Quit

Regular Expressions to NFAs:3

ε

ε

ε

ε

N
r|s

N

N

r

s

r

s

r

s

0 f

0 f

r|s r|s
0 f

Nr|s Input Symbol

State a · · · ε

r|s0 ∅ · · · {r0, s0}
r0 · · · · · · · · ·
...

...
...

...
rf · · · · · · {r|sf}
s0 · · · · · · · · ·
...

...
...

...
sf · · · · · · {r|sf}
r|sf ∅ · · · ∅



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 99 of 778 Quit

Regular Expressions to NFAs:4

N
ε

r.s
N
rr N

s
s

0 0 f
r
f

s

Nr.s Input Symbol
State a · · · ε

r0 · · · · · · · · ·
...

...
...

...
rf · · · · · · {s0}
s0 · · · · · · · · ·
...

...
...

...
sf · · · · · · · · ·

Notice that the initial state of Nr.s is r0 and the final state is sf in this case.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 100 of 778 Quit

Regular Expressions to NFAs:5

ε ε

ε

ε

N
r*

N
rr rr*

f
r*

0 0 f

Nr∗ Input Symbol
State a · · · ε

r∗0 ∅ · · · {r0, r∗f}
r0 · · · · · · · · ·
...

...
...

...
rf · · · · · · {r0, r∗f}
r∗f ∅ ∅ ∅



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 101 of 778 Quit

Regular expressions vs. NFAs

• It is obvious that for each regular expression r, the corresponding NFA Nr
is correct by construction i.e.

L(Nr) = L(r)
• Each regular expression operator

– adds at most 2 new states and

– adds at most 4 new transitions

• Every state of each Nr so constructed has

– either 1 outgoing transition on a symbol from A

– or at most 2 outgoing transitions on ε

• Hence Nr has at most 2|r| states and 4|r| transitions.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 102 of 778 Quit

Example

We construct a NFA for the regular expression (a|b)∗abb.
• Assume the alphabet A = {a, b}.
•We follow the steps of the construction as given in Constructing NFA to
Regular Expressions to NFAs:5

• For ease of understanding we use the regular expression itself (subscripted
by 0 and f respectively) to name the two new states created by the regular
expression operator.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 103 of 778 Quit

Example:-6

aa
0 f

a N
a

Steps in NFA for (a|b)∗abb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 104 of 778 Quit

Example:-5

aa
0 f

b
0

b
f

b

a N
a

N
b

Steps in NFA for (a|b)∗abb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 105 of 778 Quit

Example:-4

ε

ε

ε

ε

a

0

a
0 f

b
0

b
f

b

a

a|b a|b
f

a|b
N

Steps in NFA for (a|b)∗abb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 106 of 778 Quit

Example:-3

ε

ε

ε

ε

ε

a

0

a
0 f

b
0

b
f

b

a

a|b a|b
f

ε

(a|b)*
f

ε

0
(a|b)*

ε

(a|b)*N

Steps in NFA for (a|b)∗abb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 107 of 778 Quit

Example:-2

ε

(a|b)* a

(a|b)* a

ε

ε

ε

ε

a

0

a
0 f

b
0

b
f

b

a

a|b a|b
f

ε

(a|b)*
f

ε

a

0
(a|b)*

ε

N

Steps in NFA for (a|b)∗abb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 108 of 778 Quit

Example:-1

ε

(a|b)* a(a|b)* ab b

(a|b)* ab

ε

ε

ε

ε

a

0

a
0 f

b
0

b
f

b

a

a|b a|b
f

ε

(a|b)*
f

ε

a

0
(a|b)*

ε

N

Steps in NFA for (a|b)∗abb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 109 of 778 Quit

Example-final

(a|b)* a(a|b)* ab b(a|b)* abb

(a|b)* abb

ε

ε

ε

ε

ε

a

0

a
0 f

b
0

b
f

b

a

a|b a|b
f

ε

(a|b)*
f

ε

a

b
f

0
(a|b)*

ε

N

Steps in NFA for (a|b)∗abb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 110 of 778 Quit

Exercise 3.3 We have provided constructions for only the most basic operators on regular expressions.

Here are some extensions you can attempt

1. Show how to construct a NFA for ranges and multiple ranges of symbols

2. Assuming Nr is a NFA for the regular expression r, how will you construct the NFA Nr+.

3. Certain languages like Perl allow an operator like r{k, n}, where
L(r{k, n}) =

⋃
k≤m≤n

L(rm)

Show how to construct Nr{k,n} given Nr.

4. Consider a new regular expression operator ˆ defined by L(ˆr) = A∗ − L(r) What is the automaton

Nˆr given Nr?

5. Perhaps out of sheer perversity or to simply confuse students, the UNIX operating system also allows

the symbols “ˆ” and “$” to denote the beginning and the end of a line respectively. Consider the

regular expression ˆ(a|b)∗abb$.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 111 of 778 Quit

(a) What is the language defined by the expression?

(b) Considering that “ˆ” is overloaded, does it allow for the regular expression to define multiple

different languages?

(c) Design an NFA which accepts some or all languages that the expression may denote.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 112 of 778 Quit

Scanning Using NFAs



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 113 of 778 Quit

Scanning and Automata

• Scanning is the only phase of the compiler in which
every character of the source program is read

• The scanning phase therefore needs to be defined accurately and efficiently.

• Accuracy is achieved by regular expression specification of the tokens

• Efficiency implies that the input should not be read more than once.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 114 of 778 Quit

Nondeterminism and Token Recognition

• The three kinds of nondeterminism in the NFA construction are depicted in
the figure below.

ε

ε ε

a a

a

(i) (ii) (iii)

(i) It is difficult to know which ε transition to pick without reading any further
input

(ii) For two transitions on the same input symbol a it is difficult to know
which of them would reach a final state on further input.

(iii) Given an input symbol a and an ε transition on the current state it is
impossible to decide which one to take without looking at further input.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 115 of 778 Quit

Nondeterministic Features

• In general it is impossible to recognize tokens in the presence of nondeter-
minism without backtracking.

• Hence NFAs are not directly useful for scanning because of the presence of
nondeterminism.

• The nondeterministic feature of the construction of Nr for any regular ex-
pression r is in the ε transitions.

• The ε transitions in any automaton refer to the fact that no input character
is consumed in the transition.

• Backtracking usually means algorithms involving them are very complex and
hence inefficient.

• To avoid backtracking, the automaton should be made deterministic



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 116 of 778 Quit

From NFA to DFA

• Since the only source of nondeterminism in our construction are the ε, we
need to eliminate them without changing the language recognized by the
automaton.

• Two consecutive ε transitions are the same as one. In fact any number of
ε transitions are the same as one. So as a first step we compute all finite
sequences of ε transitions and collapse them into a single ε transition.

• Two states q, q′ are equivalent if there are only ε transitions between them.
This is called the ε-closure of states.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 117 of 778 Quit

ε-Closure

Given a set T of states, then Tε = ε-closure(T ) is the set of states which
either belong to T or can be reached from states belonging to T only through
a sequence of ε transitions.

Algorithm 3.1

ε-Closure (T )
df
=

Require: T ⊆ Q of NFA N = ⟨Q, A ∪ {ε}, q0, F,−→⟩
Ensures: Tε = ε-Closure(T )

Tε := T ;
repeat

T ′ε := Tε;Tε := T ′ε ∪ {q′ | q′ ̸∈ T ′ε,∃q ∈ T ′ε : q
ε−→ q′}

until Tε = T ′ε



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 118 of 778 Quit

Analysis of ε-Closure

• If T = ∅ then Tε = T in the first iteration.

• Tε can only grow in size through each iteration

• The set Tε cannot grow beyond the total set of states Q which is finite.
Hence the algorithm always terminates for any NFA N .

• Time complexity: O(|Q|).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 119 of 778 Quit

Recognition using NFA

The following algorithm may be used to recognize a string using a NFA. In the
algorithm we extend our notation for targets of transitions to include sets of
sources. Thus

S
a−→= {q′ | ∃q ∈ S : q

a−→ q′}
and

ε-Closure(S
a−→) =

⋃
q′∈S a−→

ε-Closure(q′)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 120 of 778 Quit

Recognition using NFA: Algorithm

Algorithm 3.2

Accept (N, x)
df
=

Require: NFA N = ⟨Q, A ∪ {ε}, q0, F,−→⟩, a lexeme x
Ensures: Boolean

S := ε-Closure(q0); a := nextchar(x);
while a ̸= end of string

do

{
S := ε-Closure(S

a−→);
a := nextchar(x)

return (S ∩ F ̸= ∅)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 121 of 778 Quit

Analysis of Recognition using NFA

• Even if ε-closure is computed as a call from within the algorithm, the time
taken to recognize a string is bounded by O(|x|.|QNr|) where |QNr| is the
number of states in Nr.

• The space required for the automaton is at most O(|r|).
• Given that ε-closure of each state can be pre-computed knowing the NFA,
the recognition algorithm can run in time linear in the length of the input
string x i.e. O(|x|).

• Knowing that the above algorithm is deterministic once ε-closures are pre-
computed one may then work towards a Deterministic automaton to reduce
the space required.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 122 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 123 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 124 of 778 Quit

3.3. Deterministic Finite Automata (DFA)

Conversion of NFAs to DFAs



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 125 of 778 Quit

Deterministic Finite Automata

• A deterministic finite automaton (DFA) is a NFA in which

1. there are no transitions on ε and

2.−→ yields a exactly one target state for each source state and symbol from
A i.e. the transition relation is no longer a relation but a total functiona

δ : Q× A→ Q

• Clearly if every regular expression had a DFA which accepts the same lan-
guage, all backtracking could be avoided.

aAlso in the case of the NFA the relation −→ may not define a transition from every state on every letter



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 126 of 778 Quit

Transition Tables of NFAs

We may think of a finite-state automaton as being defined by a 2-dimensional
table of size |Q| × |A| in which for each state and each letter of the alphabet
there is a set of possible target states defined. In the case of a non-deterministic
automaton,

1. for each state there could be ε transitions to

(a) a set consisting of a single state or

(b) a set consisting of more than one state.

2. for each state q and letter a, there could be

(a) an empty set of target states or

(b) a set of target states consisting of a single state or

(c) a set of target states consisting of more than one state



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 127 of 778 Quit

Transition Tables of DFAs

In the case of a deterministic automaton

1. there are no ε transitions, and

2. for each state q and letter a

(a) either there is no transition in the NFA (in which case we add a new “sink”
state which is a non-accepting state)

(b) or there is a transition to a unique state q′.
The recognition problem for the same language of strings becomes simpler
and would work faster (it would have no back-tracking) if the NFA could be
converted into a DFA accepting the same language.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 128 of 778 Quit

NFA to DFA

Let N = ⟨QN , A∪{ε}, sN , FN ,−→N⟩ be a NFA . We would like to construct
a DFA D = ⟨QD, A, sD, FD,−→D⟩ where
•QD the set of states of the DFA

• A the alphabet (notice there is no ε),

• sD ∈ QD the start state of the DFA,

• FD the final or accepting states of the DFA and

• δD : QD × A −→ QD the transition function of the DFA.

We would like L(N) = L(D)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 129 of 778 Quit

The Subset Construction

Non-determinism .

ε-closure .

Subsets of NFA states .

Acceptance .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 130 of 778 Quit

The Subset Construction: Non-determinism

Non-determinism A major source of non-determinism in NFAs is the pres-
ence of ε transitions. The use of ε-Closure creates a cluster of “similar”
statesa.

ε-closure .

Subsets of NFA states .

Acceptance .
aTwo states are “similar” if they are reached from the start state by the same string of symbols from the alphabet



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 131 of 778 Quit

The Subset Construction: ε-closure

Non-determinism .

ε-closure . The ε-closure of each NFA state is a set of NFA states with
“similar” behaviour, since they make their transitions on the same input
symbols though with different numbers of εs.

Subsets of NFA states .

Acceptance .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 132 of 778 Quit

The Subset Construction: Subsets of NFA states

Non-determinism .

ε-closure .

Subsets of NFA states . Each state of the DFA refers to a subset of states
of the NFA which exhibit “similar” behaviour. Similarity of behaviour refers
to the fact that they accept the same input symbols. The behaviour of two
different NFA states may not be “identical” because they may have different
numbers of ε transitions for the same input symbol.

Acceptance



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 133 of 778 Quit

The Subset Construction: Acceptance

Non-determinism .

ε-closure .

Subsets of NFA states .

Acceptance . Since the notion of acceptance of a string by an automaton,
implies finding an accepting sequence even though there may be other non-
accepting sequences, the non-accepting sequences may be ignored and those
non-accepting states may be clustered with the accepting states of the NFA.
So two different states reachable by the same sequence of symbols may be
also thought to be similar.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 134 of 778 Quit

Algorithm 3.3

NFAtoDFA (N)
df
=

Requires:NFA N = ⟨QN , A ∪ {ε}, sN , FN ,−→N⟩
Yields:DFA D = ⟨QD, A, sD, FD, δD⟩ with L(N) = L(D)

sD := ε-Closure({sN});QD := {sD};FD := ∅; δD := ∅;
U := {sD} Note: U is the set of unvisited states of D
while U ̸= ∅

do



Choose any qD ∈ U ;U := U − {qD}; Note: qD ⊆ QN

for each a ∈ A

do



q′D := ε-Closure(qD
a−→N); δD(qD, a) := q′D

if q′D ∩ FN ̸= ∅
then FD := FD ∪ {q′D};

if q′D ̸∈ QD

then

{
QD := QD ∪ {q′D};
U := U ∪ {q′D}



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 135 of 778 Quit

Example-NFA

Consider the NFA constructed for the regular expression (a|b)∗abb.

ε

b

ε

ε

ε

ε
b

a

ε

ε

a

b

ε

5

6 70 1

2 4

3

8910

N
(a|b)*abb

and apply the NFA to DFA construction algorithm



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 136 of 778 Quit

Determinising

N(a|b)∗abb D(a|b)∗abb
EC0 = ε-Closure(0) = {0, 1, 2, 3, 7}
2

a−→N 4 and 7
a−→N 8. So EC0

a−→D ε-Closure(4, 8) = EC4,8. Similarly

EC0
b−→D ε-Closure(5) = EC5

EC4,8 = ε-Closure(4, 8) = {4, 6, 7, 1, 2, 3, 8}
EC5 = ε-Closure(5) = {5, 6, 7, 1, 2, 3}
EC5

a−→D ε-Closure(4, 8) = EC4,8 and EC5
b−→D ε-Closure(5)

EC4,8
a−→D ε-Closure(4, 8) = EC4,8 and EC4,8

b−→D ε-Closure(5, 9) = EC5,9

EC5,9 = ε-Closure(5, 9) = {5, 6, 7, 1, 2, 3, 9}
EC5,9

a−→D ε-Closure(4, 8) = EC4,8 and EC5,9
b−→D ε-Closure(5, 10) = EC5,10

EC5,10 = ε-Closure(5, 10) = {5, 6, 7, 1, 2, 3, 10}
EC5,10

a−→D ε-Closure(4, 8) and EC5,10
b−→ ε-Closure(5)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 137 of 778 Quit

Final DFA

EC4,8

a

EC
5,9

D
(a|b)*abb

b

0EC

EC5 EC5,10

a

b

b

a a

b

a

b

D(a|b)∗abb Input Symbol

State a b

EC0 EC4,8 EC5
EC4,8 EC4,8 EC5,9
EC5 EC4,8 EC5
EC5,9 EC4,8 EC5,10
EC5,10 EC4,8 EC5



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 138 of 778 Quit

Recognition using DFA

The following algorithm may be used to recognize a string using a DFA. Com-
pare it with the algorithm for recognition using an NFA.

Algorithm 3.4

Accept (D, x)
df
=

Requires: DFA D = ⟨Q, A, q0, F, δ⟩, a lexeme x ∈ A∗
Ensures: Boolean

S := q0; a := nextchar(x);
while a ̸= end of string

do

{
S := δ(S, a);
a := nextchar(x)

return (S ∈ F )



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 139 of 778 Quit

Analysis of Recognition using DFA

• The running time of the algorithm is O(|x|).
• The space required for the automaton is O(|Q|.|A|).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 140 of 778 Quit

DFAs and Scanners

In theory there is no difference between theory and practice. In practice there is.

A scanner differs from a simple DFA in several ways. Most importantly,

• A scanner is a DFA with outputs. It needs to output a token or spit out an
error message and then proceed to the next lexeme.

• It is usually not much use minimising the number of states of a scanner,
since it needs to classify based on the final state it reaches.

• In practice, the act of rejecting with an error message also requires accepting
the whole lexeme. A scanner actually accepts the entire language (A −
whitespaces)∗a.

aIn the case of Python it needs to accept even whitespaces, count them and classify them as belonging to some nesting level.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 141 of 778 Quit

Scanning With output

1

2 3 4

5 6

7 8

913

i

f

a−
h,j−

z

a−e,g−z

0−9,a−z 0−9,a−z

0−9

0−9

0−9

0−9 0−9

(

* 10 11 12

14

*

if identifier

real

real

error comment

white
space

error

int

identifier

)

*~*

~* ~)

o
th

er
 c

h
a
rs

The Big Picture



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 142 of 778 Quit

DFA vis-a-vis Scanner: Practice

• A DFA simply accepts or rejects a lexeme. A scanner needs to recognize
and classify every token and lexeme.

• A DFA may simply reach a non-accepting state in case of an unrecognizable
lexeme. A scanner on the other hand needs to accept the lexeme and raise
an error and proceed to the next lexeme.

•Where a token is allowed as a prefix of another (see the case of “if”) scanners
choose the longest lexemea that is an identifiable token.

•DFAs are often “minimised” to collapse all accepting states into one accept-
ing state. This is not desirable in the case of a scanner since tokens need to
be classified separately based on the accepting states.

aNot true of FORTRAN



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 143 of 778 Quit

Exercise 3.4

1. Write a regular expression to specify all numbers in binary form that are multiples of of 4.

2. Write regular expressions to specify all numbers in binary form that are not multiples of 4.

3. Each comment in the C language

• begins with the characters “//” and ends with the newline character, or

• begins with the characters “/*” and ends with “*/” and may run across several lines.

(a) Write a regular expression to recognize comments in the C language.

(b) Transform the regular expression into a NFA.

(c) Transform the NFA into a DFA.

(d) Explain why most programming languages do not allow nested comments.

(e) modified C comments. If the character sequences “//”, “/*” and “*/” are allowed to appear

in ’quoted’ form as “’//’”, “’/*’” and “’*/’” respectively within a C comment, then give

i. a modified regular expression for C comments

ii. a NFA for these modified C comments



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 144 of 778 Quit

iii. a corresponding DFA for modified C comments

4. Many systems such as Windows XP and Linux recognize commands, filenames and folder names by

the their shortest unique prefix. Hence given the 3 commands chmod, chgrp and chown, their

shortest unique prefixes are respectively chm, chg and cho. A user can type the shortest unique

prefix of the command and the system will automatically complete it for him/her.

(a) Draw a DFA which recognizes all prefixes that are at least as long as the shortest unique prefix of

each of the above commands.

(b) Suppose the set of commands also includes two more commands cmp and cmpdir, state how

you will include such commands also in your DFA where one command is a prefix of another.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 145 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 146 of 778 Quit

4. Parsing or Syntax Analysis

4.1. Grammars

Parsing Or Syntax Analysis



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 147 of 778 Quit

Generating a Language

Consider the DFA constructed earlier to accept the language defined by the
regular expression (a|b)∗abb. We rename the states for convenience.

D(a|b)∗abb Input

State a b

S A B
A A C
B A B
C A D
D A B

We begin by rewriting each of the transitions as follows.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 148 of 778 Quit

Production rules

S −→ aA | bB
A −→ aA | bC
B −→ aA | bB
C −→ aA | bD
D −→ aA | bB | ε

and think of each of the symbols S,A,B,C,D as generating symbols and thus
producing (rather than consuming strings). For example, the strings abb and
aabbabb are generated by the above production rules as follows.

S ⇒ aA⇒ abC ⇒ abbD ⇒ abb

S ⇒ aA⇒ aaA⇒ aabC ⇒ aabbD
⇒ aabbaA⇒ aabbabC ⇒ aabbabbD ⇒ aabbabb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 149 of 778 Quit

Formal languages: Definition, Recognition, Generation

There are three different processes used in dealing with a formal language.

Definition : Regular expressions is a formal (functional programming) lan-
guage used to define or specify a formal language of tokens.

Recognition : Automata are the standard mechanism used to recognize
words/phrases of a formal language. An automaton is used to determine
whether a given word/phrase is a member of the formal language defined in
some other way.

Generation : Grammars are used to define the generation of the word-
s/phrases of a formal language.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 150 of 778 Quit

Non-regular language

Consider the following two languages over an alphabet A = {a, b}.

R = {anbn|n < 100}
P = {anbn|n > 0}

•R may be finitely represented by a regular expression (even though the actual
expression is very long).

• However, P cannot actually be represented by a regular expression

• A regular expression is not powerful enough to represent languages which
require parenthesis matching to arbitrary depths.

• All high level programming languages require an underlying language of ex-
pressions which require parentheses to be nested and matched to arbitrary
depth.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 151 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 152 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 153 of 778 Quit

4.2. Context-Free Grammars

Grammars

Definition 4.1 A grammar G = ⟨N, T , P, S⟩ consists of
• a set N of nonterminal symbols, or variables,

• a start symbol S ∈ N ,

• a set T of terminal symbols or the alphabet,

• a set P of productions or rewrite rules where each rule is of the form
α→ β for α, β ∈ (N ∪ T )∗

Definition 4.2 Given a grammar G = ⟨N, T , P, S⟩, any α ∈ (N ∪ T )∗ is
called a sentential form. Any x ∈ T ∗ is called a sentencea.

Note. Every sentence is also a sentential form.
asome authors call it a word. However we will reserve the term word to denote the tokens of a programming language.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 154 of 778 Quit

Grammars: Notation

• Upper case roman letters (A,B, . . . , X, Y , etc.) denote nonterminals.

• Final upper case roman letters (X, Y, Z etc.) may also be used as meta-
variables which denote arbitrary non-terminal symbols of a grammar.

• Initial lower case roman letters (a, b, c etc.) will be used to denote terminal
symbols.

• Lower case greek letters (α, β etc.) denote sentential forms (or even sen-
tences).

• Final lower case letters (u, v, . . . , x, y, z etc.) denote only sentences.

• In each case the symbols could also be decorated with sub-scripts or super-
scripts.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 155 of 778 Quit

Context-Free Grammars: Definition

Definition 4.3 A grammar G = ⟨N, T , P, S⟩ is called context-free if
each production is of the form X −→ α, where

•X ∈ N is a nonterminal and

• α ∈ (N ∪ T )∗ is a sentential form.

• The production is terminal if α is a sentence



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 156 of 778 Quit

CFG: Example 1

G = ⟨{S}, {a, b}, P, S⟩, where S −→ ab and S −→ aSb are the only
productions in P .
Derivations look like this:

•
S ⇒ ab

•
S ⇒ aSb⇒ aabb

•
S ⇒ aSb⇒ aaSbb⇒ aaabbb

•
S ⇒ aSb⇒ aaSbb⇒ aaaSbbb

The first three derivations are complete while the last one is partial



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 157 of 778 Quit

Derivations

Definition 4.4 A (partial) derivation (of length n ∈ N) in a context-free
grammar is a finite sequence of the form

α0⇒ α1⇒ α2⇒ · · ·αn (3)

where each αi ∈ (N ∪T )∗ (0 ≤ i ≤ n ) is a sentential form where α0 = S
and αi+1 is obtained by applying a production rule to a non-terminal symbol
in αi for 0 ≤ i < n.

Notation. S ⇒∗ α denotes that there exists a derivation of α from S.

Definition 4.5 The derivation (3) is complete if αn ∈ T ∗ i.e. αn is a
sentence. Then αn is said to be a sentence generated by the grammar.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 158 of 778 Quit

Language Generation

Definition 4.6 The language generated by a grammar G is the set of sen-
tences that can be generated by G and is denoted L(G).
Example 4.7L(G), the language generated by the grammar G is
{anbn|n > 0}. Prove using induction on the length of derivations.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 159 of 778 Quit

Regular Grammars

Definition 4.8 A production rule of a context-free grammar is

Right Linear: if it is of the form X −→ a or X −→ aY

Left Linear: if it is of the form X −→ a or X −→ Y a

where a ∈ T and X, Y ∈ N .

Definition 4.9 A regular grammar is a context-free grammar whose produc-
tions are either only right linear or only left linear.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 160 of 778 Quit

DFA to Regular Grammar

b

a

b

b

a a
b

a

bS

a D
(a|b)*abb

CA

B E

D(a|b)∗abb Input RLG

State a b Rules

S A B S → aA|bB
A A C A→ aA|bC
B A B B → aA|bB
C A E C → aA|bE|b
E A C E → aA|bC

Consider the DFA with the states renamed as shown above. We could eas-
ily convert the DFA to a right linear grammar which generates the language
accepted by the DFA.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 161 of 778 Quit

CFG: Empty word

G = ⟨{S}, {a, b}, P, S⟩, where S −→ SS | aSb | ε
generates all sequences of matching nested parentheses, including the empty
word ε.

A leftmost derivation might look like this:

S ⇒ SS ⇒ SSS ⇒ SS ⇒ aSbS ⇒ abS ⇒ abaSb . . .

A rightmost derivation might look like this:

S ⇒ SS ⇒ SSS ⇒ SS ⇒ SaSb⇒ Sab⇒ aSbab . . .

Other derivations might look like God alone knows what!

S ⇒ SS ⇒ SSS ⇒ SS ⇒ . . .

Could be quite confusing!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 162 of 778 Quit

CFG: Derivation trees 1

Derivation sequences

• put an artificial order in which productions are fired.

• instead look at trees of derivations in which we may think of productions
as being fired in parallel.

• There is then no highlighting in red to determine which copy of a nonterminal
was used to get the next member of the sequence.

•Of course, generation of the empty word ε must be shown explicitly in the
tree.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 163 of 778 Quit

CFG: Derivation trees 2

S

S

S

S

S S

S

S

a b a b

a bε

ε

ε

Derivation tree of

abaabb

ε



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 164 of 778 Quit

CFG: Derivation trees 3

S

S

S

S

S

S

S

a b

a b

ε

ε

S

a b

ε
Another

Derivation tree of

abaabb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 165 of 778 Quit

CFG: Derivation trees 4

S

S

S

S

S

S

a b

a b

ε

Sa b

ε

S

ε

Yet another

Derivation tree of
abaabb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 166 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 167 of 778 Quit

4.3. Ambiguity

Ambiguity Disambiguation



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 168 of 778 Quit

Ambiguity: 1

G1 = ⟨{E, I, C}, {y, z,4, ∗,+}, P1, {E}⟩ where P1 consists of the following
productions.

E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

EE



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 169 of 778 Quit

Ambiguity: 2

G1 = ⟨{E, I, C}, {y, z,4, ∗,+}, P1, {E}⟩ where P1 consists of the following
productions.

E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

E

E E*

E

EE +



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 170 of 778 Quit

Ambiguity: 3

G1 = ⟨{E, I, C}, {y, z,4, ∗,+}, P1, {E}⟩ where P1 consists of the following
productions.

E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

E

E

E

E*

E+

I

E

E

E

E +

EI

*



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 171 of 778 Quit

Ambiguity: 4

G1 = ⟨{E, I, C}, {y, z,4, ∗,+}, P1, {E}⟩ where P1 consists of the following
productions.

E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

E

E

E

E*

E+

I C

I

z

E

E

E

E +

E

C

I

y

I

*



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 172 of 778 Quit

Ambiguity: 5

G1 = ⟨{E, I, C}, {y, z,4, ∗,+}, P1, {E}⟩ where P1 consists of the following
productions.

E → I | C | E+E | E∗E
I → y | z
C → 4

Consider the sentence y + 4 ∗ z.

E

E

E

E*

E+

I

y

C

4

I

z

E

E

E

E +

E

C

I

y

4

I

z

*



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 173 of 778 Quit

Left-most Derivation 1

Left-most derivation of y+4*z corresponding to the first derivation tree.

E ⇒
E+E ⇒
I+E ⇒
y+E ⇒
y+E∗E ⇒
y+C∗E ⇒
y+4∗E ⇒
y+4∗I ⇒
y + 4 ∗ z



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 174 of 778 Quit

Left-most Derivation 2

Left-most derivation of y+4*z corresponding to the second derivation tree.

E ⇒
E∗E ⇒
E+E∗E ⇒
I+E∗E ⇒
y+E∗E ⇒
y+C∗E ⇒
y + 4∗E ⇒
y + 4∗I ⇒
y + 4 ∗ z



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 175 of 778 Quit

Right-most Derivation 1

Right-most derivation of y+4*z corresponding to the first derivation tree.

E ⇒
E+E ⇒
E+E∗E ⇒
E+E∗I ⇒
E+E∗z ⇒
E+C∗z ⇒
E+4 ∗ z ⇒
I+4 ∗ z ⇒
y + 4 ∗ z



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 176 of 778 Quit

Right-most Derivation 2

Right-most derivation of y+4*z corresponding to the second derivation tree.

E ⇒
E∗E ⇒
E∗I ⇒
E∗z ⇒
E+E∗z ⇒
E+C∗z ⇒
E+4 ∗ z ⇒
I+4 ∗ z ⇒
y + 4 ∗ z



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 177 of 778 Quit

Characterizing Ambiguity

The following statements are equivalent.

• A CFG is ambiguous if some sentence it generates has more than one deriva-
tion tree

• A CFG is ambiguous if there is a some sentence it generates with more than
one left-most derivation

• A CFG is ambiguous if there is a some sentence it generates with more than
one right-most derivation



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 178 of 778 Quit

Ambiguity in CFLs

see Wikipedia

• Some ambiguities result from incorrect grammars, i.e. there may exist a
grammar which generates the same language with unique derivation trees.

• There may be some languages which are inherently ambiguous i.e. there is
no context-free grammar for the language with only unique derivation trees
for every sentence of the language.

•Whether a given CFG is ambiguous is undecidable i.e. there is no algorithm
which can decide whether a given context-free grammar is ambiguous.

•Whether a given context-free language is inherently ambiguous is also unde-
cidable since there is no algorithm which can decide whether any CFG that
generates the language is ambiguous.

https://en.wikipedia.org/wiki/Ambiguous_grammar


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 179 of 778 Quit

Removing ambiguity

There are essentially three ways adopted by programming language designers
or compiler designers to remove ambiguity

• Change the language generated by introducing new bracketing tokens, (e.g.
new reserved keywords begin...end).

• Introduce new precedence or associativity rules to disambiguate – this will
invalidate certain derivation trees and may guarantee uniqueness, (e.g. the
dangling-else problem see section 4.4).

• Change the grammar of the language (without changing the language gen-
erated)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 180 of 778 Quit

Disambiguation

The only way to remove ambiguity (without changing the language generated
for a language which is not ambiguous) is to change the grammar by introducing
some more non-terminal symbols and changing the production rulesa. Consider
the grammar G′1 = ⟨N ′, {y, z,4, ∗,+}, P ′, {E}⟩ where N ′ = N ∪ {T, F}
with the following production rules P ′.

E → E+T | T
T → T∗F | F
F → I | C
I → y | z
C → 4

and compare it with the grammar G1
aHowever the introduction of fresh non-terminals and rules may introduce new ambiguities, if th edesigner is not careful!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 181 of 778 Quit

Left-most Derivation 1’

The left-most derivation of y+4*z is then as follows.

E ⇒
E+T ⇒
I+T ⇒
y+T ⇒
y+T∗F ⇒
y+T∗F ⇒
y+F∗F ⇒
y+C∗F ⇒
y+4∗F ⇒
y+4∗I ⇒
y + 4 ∗ z



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 182 of 778 Quit

Left-most Derivations

Compare it with the Left-most Derivation 1.

G1. E ⇒ E+E ⇒ I+E ⇒ y+E ⇒ y+E∗E ⇒
y+C∗E ⇒ y+4∗E ⇒ y+4∗I ⇒ y + 4 ∗ z

G′1. E ⇒ E+T ⇒ I+T ⇒ y+T ⇒ y+T∗F ⇒ y+T∗F ⇒ y+F∗F ⇒
y+C∗F ⇒ y+4∗F ⇒ y+4∗I ⇒ y + 4 ∗ z

There is no derivation in G′1 corresponding to Left-most Derivation 2 (Why
not?).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 183 of 778 Quit

Right-most Derivation 1’

Right-most derivation of y+4*z corresponding to the first derivation tree.

E ⇒
E+T ⇒
E+T∗F ⇒
E+T∗I ⇒
E+T∗z ⇒
E+C∗z ⇒
E+4 ∗ z ⇒
F+4 ∗ z ⇒
I+4 ∗ z ⇒
+4 ∗ z ⇒
y + 4 ∗ z

Compare it with the Right-most Derivation 1.
There is no derivation corresponding to Right-most Derivation 2.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 184 of 778 Quit

Disambiguation by Parenthesization

Another method of disambiguating a language is to change the language gen-
erated, by introducing suitable bracketing mechanisms.

Example 4.10 Compare the following fully parenthesized grammar G2 (which
has the extra terminal symbols ( and )) with the grammar G1 without paren-
theses

E → I | C | (E+E) | (E∗E)
I → y | z
C → 4

Though unambiguous, the language defined by this grammar is different from
that of the original grammar without parentheses.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 185 of 778 Quit

Associativity and Precedence

The grammar G′1 implements
Precedence. ∗ has higher precedence than +.

Associativity. ∗ and + are both left associative operators.

but is parentheses-free, whereas grammar G2 generates a different language
which is unambiguous. We may combine the two with the benefits of both.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 186 of 778 Quit

Parenthesization, Associativity and Precedence

Example 4.11 Compare the following parenthesized grammar G′2 which com-
bines the benefits of both G′1 and G2 (parenthesization wherever required
by implementing the bodmas rule). G′2 = ⟨N ′, {y, z,4, ∗,+, (, )}, P ′2, {E}⟩
where N ′ = N ∪ {T, F} with the following production rules P ′2.

E → E+T | T
T → T∗F | F
F → I | C | (E)
I → y | z
C → 4



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 187 of 778 Quit

4.4. The “dangling else” problem

• Some programming languages like FORTRAN and Assembly (conditional jumps) have a single if. . . then construct. We
write it(b, C) to denote if b then C.

• Some programming languages like ML, OCAML have a single if. . . then. . . else construct and we write ite(b, C, C ′) to
denote if b then C else C ′.

• Many programming languages have both if. . . then and if. . . then. . . else constructs which potentially may lead to a
dangling-else problem.

The dangling-else problem potentially is an ambiguity associated with a compound construct such as

if b1 then if b2 then C1 else C2 (4)

where b1 and b2 are boolean expressions and C1 and C2 are appropriate constructs (expressions or commands) that are
allowed by the language.

The ambiguity arises because the construct (4) may be interpreted as denoting either it(b1, ite(b2, C1, C2)) or ite(b1, it(b2, C1), C2).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 188 of 778 Quit

$C’_2$

if then begin if then begin end else begin end end

b1 b2 C1 C2

C ′1

C ′0

C ′0

C0

Figure 1: it(b1, ite(b2, C1, C2))

Disambiguation

1. Disambiguation may be achieved in the language by introducing new bracketing symbols (e.g. begin. . . end) for all
constructs of the kind that C belongs to. If the use of these brackets is made mandatory in the language then the
construct (4) itself would be syntactically illegal and would have to be replaced by one of the following depending upon
the programmer’s intention.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 189 of 778 Quit

• If the programmer’s intention corresponds to it(b1, ite(b2, C1, C2)) (see the parse tree in figure 1) then

if b1 then
begin

if b2 then
begin
C1

end
else
begin
C2

end
end

• If programmer intended ite(b1, it(b2, C1), C2) (see the parse tree in figure 2).

if b1 then
begin

if b2 then
begin
C1

end
end



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 190 of 778 Quit

else
begin
C2

end

$C’_2$

if then begin if then begin end else begin endend

b1 b2

C ′1

C ′0

C ′0

C0

C1 C2

Figure 2: ite(b1, it(b2, C1), C2)

2. While the use of begin. . . end is general-purpose enough for all constructs of the kind that C is, it tends to introduce
too many tokens in an actual program. Some languages (e.g. Bash) instead introduce a unique closing token for



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 191 of 778 Quit

each construct. That is, the constructs come with pairs of unique opening and closing tokens (e.g. if. . . then. . .fi,
if. . . then. . . else. . .fi, case. . . esac etc.) In such a language the constructs corresponding to it(b1, ite(b2, C1, C2)) would
then be written as follows (see also the parse tree in figure 3).

$b_1$

if then if then else
fi fi

b2 C1 C2

C0

C ′0

Figure 3: it(b1, ite(b2, C1, C2))

if b1 then
if b2 then
C1

else
C2

fi



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 192 of 778 Quit

while ite(b1, it(b2, C1), C2) would be written as (see also the parse tree in figure 4)

then else fiif if then fi

C2b2
C1

C0

b1

C ′1

Figure 4: it(b1, ite(b2, C1, C2))

if b1 then
if b2 then
C1

fi
else
C2

fi

In general this solution leads to a larger number of reserved words in the language but a smaller number of tokens
(produced after scanning) per syntactically valid program as opposed to the previous solution. Languages like C and



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 193 of 778 Quit

Perl also dispense with the reserved word then by insisting that all conditions in such statements be enclosed in
parentheses.

3. Languages like Pascal which use a single bracketing mechanism for command constructs, often try to reduce the number
of tokens produced per program by relaxing the mandatory requirement of bracketing, by stipulating that bracketing is
required only for compound commands. Thus for atomic commands c1 and c2 the ambiguity in

if b1 then if b2 then c1 else c2 (5)

is resolved by introducing an associativety rule that each else is associated with the nearest enclosing condition. That
is the construct (5) is interpreted as referring to it(b1, ite(b2, C1, C2)).

4. There are other means of achieving disambiguation of which the most ingenious is the use of white-space indentation in
Python to keep it unambiguous. Hence in Python it(b1, ite(b2, C1, C2)) would be written as

if b1:
if b2:
C1

else:
C2

and ite(b1, it(b2, C1), C2) would be written as

if b1:



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 194 of 778 Quit

if b2:
C1

else:
C2



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 195 of 778 Quit

Exercise 4.1

1. Two context-free grammars are considered equivalent if they generate the same language. Prove that

G1 and G′1 are equivalent.

2. Palindromes. A palindrome is a string that is equal to its reverse i.e. it is the same when read

backwards (e.g. aabbaa and abaabaaba are both palindromes). Design a grammar for generating all

palindromes over the terminal symbols a and b.

3. Matching brackets.

(a) Design a context-free grammar to generate sequences of matching brackets when the set of termi-

nals consists of three pairs of brackets {(, ), [, ], {, }}.
(b) If your grammar is ambiguous give two rightmost derivations of the same string and draw the

two derivation trees. Explain how you will modify the grammar to make it unambiguous.

(c) If your grammar is not ambiguous prove that it is not ambiguous.

4. Design an unambiguous grammar for the expression language on integers consisting of expressions

made up of operators +, -, *, /, % and the bracketing symbols ( and ), assuming the usual rules of

precedence among operators that you have learned in school.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 196 of 778 Quit

5. Modify the above grammar to include the exponentiation operator ^ which has a higher precedence

than the other operators and is right-associative.

6. How will you modify the grammar above to include the unary minus operator - where the unary

minus has a higher precedence than other operators?

7. The language specified by a regular expression can also be generated by a context-free grammar.

(a) Design a context-free grammar to generate all floating-point numbers allowed by the C language.

(b) Design a context-free grammar to generate all numbers in binary form that are not multiples of

4.

(c) Write a regular expression to specify all numbers in binary form that are multiples of of 3.

8. Prove that the G′1 is indeed unambiguous.

9. Prove that the grammar of fully parenthesized expressions is unambiguous.

10. Explain how the grammar G′1 implements left associativity and precedence.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 197 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 198 of 778 Quit

4.5. Specification of Syntax: Extended Backus-Naur Form

Specification of Syntax: EBNF



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 199 of 778 Quit

The EBNF specification of a programming language is a collection of rules that defines the (context-free) grammar of the
language. It specifies the formation rules for the correct grammatical construction of the phrases of the language. In order
to reduce the number of rules unambiguously regular expression operators such as alternation, Kleene closure and +-closure
are also used. (Con)catenation is represented by juxtaposition. In addition, a period is used to terminate a rule. The rules
are written usually in a “top-down fashion”.

Start symbol. The very first rule gives the productions of the start symbol of the grammar.

Non-terminals. Uses English words or phrases to denote non-terminal symbols. These words or phrases are suggestive of
the nature or meaning of the constructs.

Metasymbols.

• Sequences of constructs enclosed in “{” and “}” denote zero or more occurrences of the construct (c.f. Kleene closure
on regular expressions).

• Sequences of constructs enclosed in “[” and “]” denote that the enclosed constructs are optional i.e. there can be
only zero or one occurrence of the sequence.

• Constructs are enclosed in “(” and “)” to group them together.

• “ | ” separates alternatives.

• “ ::= ” defines the productions of each non-terminal symbol.

• “ .” terminates the possibly many rewrite rules for a non-terminal.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 200 of 778 Quit

Terminals. Terminal symbol strings are sometimes enclosed in double-quotes when written in monochrome (we shall addi-
tionally colour-code them).

Note.

We have chosen to colour-code the EBNF specification in order to clearly separate the colours of the EBNF operators from
those of the language that is being specified. Further we have chosen to use different colours for the Nonterminal symbols
and the terminal symbols. In the bad old days when the world was only black-and-white and the only font available was
the type-writer font, the <Nonterminal> symbols were usually enclosed in “<>” while the terminal symbols were written
directly (optionally enclosed in double-quotes (")).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 201 of 778 Quit

Balanced Parentheses: CFG

Example 4.12 A context-free grammar for balanced parentheses (including
the empty string) over the terminal alphabet {(, ), [, ], {, }} could be given as
BP3 = ⟨{S}, {(, ), [, ], {, }}, P, {S}⟩, where P consists of the productions

S → ϵ,
S → (S)S,
S → [S]S,
S → {S}S



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 202 of 778 Quit

Balanced Parentheses: EBNF

Example 4.13BP3 may be expressed in EBNF as follows:

BracketSeq ::= {Bracket} .
Bracket ::= LeftParen BracketSeq RightParen |

LeftSqbracket BracketSeq RightSqbracket |
LeftBrace BracketSeq RightBrace .

LeftParen ::= “(” .
RightParen ::= “)” .
LeftSqbracket ::= “[” .
RightSqbracket ::= “]” .
LeftBrace ::= “{” .
RightBrace ::= “}” .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 203 of 778 Quit

EBNF in EBNF

EBNF has its own grammar which is again context-free. Hence EBNF (4.5)
may be used to define EBNF in its own syntax as follows:

Syntax ::= {Production} .
P roduction ::= NonTerminal “::=” PossibleRewrites “.” .
PossibleRewrites ::= Rewrite {“|” Rewrite} .
Rewrite ::= Symbol {Symbol} .
Symbol ::= NonTerminal | Terminal | GroupRewrites .
GroupRewrites ::= “{” PossibleRewrites “}” |

“[” PossibleRewrites “]” |
“(” PossibleRewrites “)” .

NonTerminal ::= Letter {Letter | Digit} .
T erminal ::= Character {Character} .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 204 of 778 Quit

EBNF: Character Set

The character set used in EBNF is described below.

Character ::= Letter | Digit | SpecialChar
Letter ::= UpperCase | LowerCase
UpperCase ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” |

“I” | “J” | “K” | “L” | “M” | “N” | “O” | “P” | “Q” |
“R” | “S” | “T” | “U” | “V ” | “W” | “X” | “Y ” | “Z”

LowerCase ::= “a” | “b” | “c” | “d” | “e” | “f” | “g” | “h” |
“i” | “j” | “k” | “l” | “m” | “n” | “o” | “p” | “q” |
“r” | “s” | “t” | “u” | “v” | “w” | “x” | “y” | “z”

Digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”
SpecialChar ::= “!” | “”” | “#” | “$” | “%” | “&” | “′” | “(” | “)” | “∗” |

“+” | “,” | “−” | “.” | “/” | “:” | “;” | “<” | “=” | “>” | “?”
“@” | “[” | “\” | “]” | “ˆ” | “ ” | “‘” | “{” | “|” | “}” | “˜”



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 205 of 778 Quit

EBNF in ASCII-EBNF

<Syntax> ::= {<Production>}.

<Production> ::= <NonTerminal> "::=" <PossibleRewrites>".".

<PossibleRewrites> ::= <Rewrite> {"|" <Rewrite>}.

<Rewrite> ::= <Symbol> {<Symbol>}.

<Symbol> ::= <NonTerminal> | <Terminal> | <GroupRewrites>.

<GroupRewrites> ::= "{"<PossibleRewrites>"}" |

"["<PossibleRewrites>"]" |

"("<PossibleRewrites>")".

<NonTerminal> ::= <Letter>{<Letter> | <Digit>}.

<Terminal> ::= <Character>{<Character>}.

We leave it to the interested reader to define the nonterminals <Digit>,
<Letter> and <Character>. Many languages even now are specified in
some slight variant of the above notation.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 206 of 778 Quit

4.6. The WHILE Programming Language: Syntax

All words written in bold font are reserved words and cannot be used as identifiers in any program.

Program ::= “program” Identifier “::”Block .
Block ::= DeclarationSeq CommandSeq .

DeclarationSeq ::= {Declaration} .
Declaration ::= “var” V ariableList“:”Type“;” .
T ype ::= “int” | “bool” .
V ariableList ::= V ariable{“,” V ariable} .
CommandSeq ::= “{”{Command“;”}“}” .
Command ::= V ariable“:=”Expression |

“read” V ariable |
“write” IntExpression |
“if” BoolExpression “then” CommandSeq
“else” CommandSeq
“endif” |
“while” BoolExpression “do” CommandSeq
“endwh” .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 207 of 778 Quit

Expression ::= IntExpression | BoolExpression .
IntExpression ::= IntExpression AddOp IntTerm | IntTerm .

IntTerm ::= IntTerm MultOp IntFactor | IntFactor .
IntFactor ::= Numeral | V ariable |

“(”IntExpression“)” | “˜”IntFactor .
BoolExpression ::= BoolExpression “||” BoolTerm | BoolTerm .

BoolTerm ::= BoolTerm “&&” BoolFactor | BoolFactor .
BoolFactor ::= “tt” | “ff” | V ariable | Comparison |

“(”BoolExpression“)” | “!”BoolFactor .
Comparison ::= IntExpression RelOp IntExpression .
V ariable ::= Identifier .
RelOp ::= “<” | “<=” | “=” | “>” | “>=” | “<>” .
AddOp ::= “+” | “−” .
MultOp ::= “∗” | “/” | “%” .
Identifier ::= Letter{Letter | Digit} .
Numeral ::= [“+” | “˜”]Digit{Digit} .

Note

1. “;” acts as a terminator for both Declarations and Commands.

2. “,” acts as a separator in V ariableList



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 208 of 778 Quit

3. Comparison has a higher precedence than BoolTerm and BoolExpression.

4. RelOps have lower precedence than any of the integer operations specified in MultOp and AddOp.

5. The nonterminals Letter and Digit are as specified earlier in the EBNF character set



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 209 of 778 Quit

Syntax Diagrams

• EBNF was first used to define the grammar of ALGOL-60 and the syntax
was used to design the parser for the language.

• EBNF also has a diagrammatic rendering called syntax diagrams or railroad
diagrams. The grammar of SML has been rendered by a set of syntax
diagrams.

• Pascal has been defined using both the text-version of EBNF and through
syntax diagrams.

•While the text form of EBNF helps in parsing, the diagrammatic rendering
is only for the purpose of readability.

• EBNF is a specification language that almost all modern programming lan-
guages use to define the grammar of the programming language

http://darcy.rsgc.on.ca/ACES/ICS4U/Calculus/SyntaxDiagrams.pdf
http://darcy.rsgc.on.ca/ACES/ICS4U/Calculus/SyntaxDiagrams.pdf
https://www.cse.buffalo.edu//~regan/cse305/MLBNF.pdf
http://www.fit.vutbr.cz/study/courses/APR/public/ebnf.html
http://primepuzzle.com/tp2/syntax-diagrams.html


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 210 of 778 Quit

Syntax Specifications

• BNF of C

• BNF of Java

• EBNF of Pascal

• Pascal Syntax diagrams
• BNF of Standard ML

• BNF of Datalog

• BNF of Prolog

https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm
https://users-cs.au.dk/amoeller/RegAut/JavaBNF.html
http://www.fit.vutbr.cz/study/courses/APR/public/ebnf.html
http://primepuzzle.com/tp2/syntax-diagrams.html
https://www.cse.buffalo.edu//~regan/cse305/MLBNF.pdf
https://docs.racket-lang.org/datalog/datalog.html
https://github.com/simonkrenger/ch.bfh.bti7064.w2013.PrologParser/blob/master/doc/prolog-bnf-grammar.txt


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 211 of 778 Quit

Syntax Diagrams of SML: 1

Syntax of Standard ML

Tobias Nipkow and Larry Paulson

PROGRAMS AND MODULES

Program

TopLevelDeclaration
;

�

�

�




�

�

�




TopLevelDeclaration

Expression

�

�

ObjectDeclaration

�

SignatureDeclaration

�

FunctorDeclaration

�










ObjectDeclaration

Declaration

�

�

structure

�

�

�




Ident
:

�

�

�




Signature

�

�

�




=

�

�

�




Structure

�

�

and

�

�

�




�




�

local

�

�

�




ObjectDeclaration
in

�

�

�




ObjectDeclaration
end

�

�

�




�

�










�

�

;

�

�

�




�

�

�




�




1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 212 of 778 Quit

Syntax Diagrams of SML: 2

SignatureDeclaration

signature

�

�

�




Ident
=

�

�

�




Signature

�

�

and

�

�

�




�




�

�

�




�

�

;

�

�

�




�

�

�




�




FunctorDeclaration

functor

�

�

�




FunctorBinding

�

�

and

�

�

�




�




�

�

�




�

�

;

�

�

�




�

�

�




�




FunctorBinding

Ident
(

�

�

�




FunctorArguments
)

�

�

�




:

�

�

�




Signature

�

�

�




=

�

�

�




Structure

FunctorArguments

Ident
:

�

�

�




Signature

�

�

Speci�cation

�




Structure

struct

�

�

�




ObjectDeclaration
end

�

�

�




�

�

CompoundIdent

�

Ident
(

�

�

�




Structure

�

�

ObjectDeclaration

�




)

�

�

�




�

let

�

�

�




ObjectDeclaration
in

�

�

�




Structure
end

�

�

�




�










Signature

sig

�

�

�




Speci�cation
end

�

�

�




�

�

Ident

�




2



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 213 of 778 Quit

Syntax Diagrams of SML: 3

Speci�cation

val

�

�

�




Ident
:

�

�

�




Type

�

�

and

�

�

�




�




�

�

type

�

�

�




�

�

eqtype

�

�

�




�




TypeVarList Ident

�

�

and

�

�

�




�




�

datatype

�

�

�




DatatypeBinding

�

�

and

�

�

�




�




�

exception

�

�

�




Ident
of

�

�

�




Type

�

�

�




�

�

and

�

�

�




�




�

structure

�

�

�




Ident
:

�

�

�




Signature

�

�

and

�

�

�




�




�

sharing

�

�

�




�

�

type

�

�

�




�




CompoundIdent

�

�

=

�

�

�




�




�

�

and

�

�

�




�




�

local

�

�

�




Speci�cation
in

�

�

�




Speci�cation
end

�

�

�




�

open

�

�

�




CompoundIdent

�

�

�




�

include

�

�

�




Ident

�

�

�




�

�




























�

�

;

�

�

�




�

�

�




�




3



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 214 of 778 Quit

Syntax Diagrams of SML: 4

1.

DECLARATIONS

Declaration

val

�

�

�




�

�

rec

�

�

�




�




Pattern
=

�

�

�




Expression

�

�

and

�

�

�




�




�

�

fun

�

�

�




FunHeading

�

�

:

�

�

�




Type

�




=

�

�

�




Expression

�

�

|

�

�

�




�




�

�

and

�

�

�




�




�

type

�

�

�




TypeBinding

�

datatype

�

�

�




DatatypeBinding

�

�

withtype

�

�

�




TypeBinding

�




�

abstype

�

�

�




DatatypeBinding

�

�

withtype

�

�

�




TypeBinding

�




�


�

�

with

�

�

�




Declaration
end

�

�

�




�

exception

�

�

�




Name
of

�

�

�




Type

�

�

=

�

�

�




CompoundName

�

�







�

�

and

�

�

�




�




�

local

�

�

�




Declaration
in

�

�

�




Declaration
end

�

�

�




�

open

�

�

�




CompoundIdent

�

�

�




�

infix

�

�

�




�

�

infixr

�

�

�




�




�

�

Digit

�




�

�

nonfix

�

�

�




�




Ident

�

�

�




�

�




























�

�

;

�

�

�




�

�

�




�




4



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 215 of 778 Quit

Syntax Diagrams of SML: 5

1.

FunHeading

Name AtomicPattern

�

�

�




�

�

(

�

�

�




AtomicPattern In�xOperator AtomicPattern )

�

�

�




�


�

��

�

AtomicPattern

�




�

AtomicPattern In�xOperator AtomicPattern

�







TypeBinding

TypeVarList Ident
=

�

�

�




Type

�

�

and

�

�

�




�




DatatypeBinding

TypeVarList Ident
=

�

�

�




Ident
of

�

�

�




Type

�

�

�




�

�

|

�

�

�




�




�

�

and

�

�

�




�




TypeVarList

�

�

TypeVar

�

(

�

�

�




TypeVar

�

�

,

�

�

�




�




)

�

�

�




�







5



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 216 of 778 Quit

Syntax Diagrams of SML: 6

1.

EXPRESSIONS

Expression

In�xExpression

�

�

Expression
:

�

�

�




Type

�

Expression andalso

�

�

�




�

�

orelse

�

�

�




�




Expression

�

Expression
handle

�

�

�




Match

�

raise

�

�

�




Expression

�

if

�

�

�




Expression
then

�

�

�




Expression
else

�

�

�




Expression

�

while

�

�

�




Expression
do

�

�

�




Expression

�

case

�

�

�




Expression
of

�

�

�




Match

�

fn

�

�

�




Match

�

























In�xExpression

AtomicExpression

�

�

�




�

�

In�xExpression In�xOperator In�xExpression

�




6



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 217 of 778 Quit

Syntax Diagrams of SML: 7

1.

AtomicExpression

CompoundName

�

�

Constant

�

(

�

�

�




Expression

�

�

,

�

�

�




�




�

�

�




)

�

�

�




�

[

�

�

�




Expression

�

�

,

�

�

�




�




�

�

�




]

�

�

�




�

f

�

�

�




Label
=

�

�

�




Expression

�

�

,

�

�

�




�




�

�

�




g

�

�

�




�

#

�

�

�




Label

�

(

�

�

�




Expression

�

�

;

�

�

�




�




)

�

�

�




�

let

�

�

�




Declaration in

�

�

�




Expression

�

�

;

�

�

�




�




end

�

�

�




�






















MATCHES AND PATTERNS

Match

Pattern
=>

�

�

�




Expression

�

�

|

�

�

�




�




Pattern

AtomicPattern

�

�

CompoundName AtomicPattern

�

Pattern In�xOperator Pattern

�

Pattern
:

�

�

�




Type

�

Name

�

�

:

�

�

�




Type

�




as

�

�

�




Pattern

�













7



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 218 of 778 Quit

Syntax Diagrams of SML: 8

1.

AtomicPattern

_

�

�

�




�

�

CompoundName

�

Constant

�

(

�

�

�




Pattern

�

�

,

�

�

�




�




�

�

�




)

�

�

�




�

[

�

�

�




Pattern

�

�

,

�

�

�




�




�

�

�




]

�

�

�




�

f

�

�

�




FieldPattern

�

�

�




g

�

�

�




�
















FieldPattern

...

�

�

�




�

�

Label =

�

�

�




Pattern

�

�

Ident

�

�

:

�

�

�




Type

�




�

�

as

�

�

�




Pattern

�




�




�


�

��

�

,

�

�

�




FieldPattern

�




�




8



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 219 of 778 Quit

Syntax Diagrams of SML: 9

1.

TYPES

Type

TypeVar

�

��

�

Type

�

�

(

�

�

�




Type

�

�

,

�

�

�




�




)

�

�

�




�




�




CompoundIdent

�

Type
*

�

�

�




Type

�

�

�




�

Type
->

�

�

�




Type

�

f

�

�

�




Label :

�

�

�




Type

�

�

,

�

�

�




�




�

�

�




g

�

�

�




�

(

�

�

�




Type
)

�

�

�




�
















LEXICAL MATTERS: IDENTIFIERS, CONSTANTS, COMMENTS

CompoundIdent

Ident

�

�

.

�

�

�




�




CompoundName

CompoundIdent

�

�

op

�

�

�




In�xOperator

�




Name

Ident

�

�

op

�

�

�




In�xOperator

�




In�xOperator

any Ident that has been declared to be in�x

�

�

�




9



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 220 of 778 Quit

Syntax Diagrams of SML: 10

1.

Constant

Numeral
.

�

�

�




Digit

�

�

�




�

�

�




E

�

�

�




Numeral

�

�

�




�

�

"

�

�

�




�

�

any printable character except \ and "

�

�

�




�

�

StringEscape
\

�

�

�




�




�




"

�

�

�




�




StringEscape

n

�

�

�




�

�

t

�

�

�




�

^

�

�

�




one of @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

�

�

�




�

Digit Digit Digit

�

"

�

�

�




�

\

�

�

�




�

Space

�

�

Tab

�

Newline

�

Formfeed

�










�

�

�




\

�

�

�




�



















Numeral

�

�

~

�

�

�




�




Digit

�

�

�




TypeVar

'

�

�

�




�

�

�




�

�

_

�

�

�




�




AlphanumericIdent

10



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 221 of 778 Quit

Syntax Diagrams of SML: 11

1.

Ident

AlphanumericIdent

�

�

one of !%&$#+-/:<=>?@\~`^|*

�

�

�




�

�

�




�




Label

Ident

�

�

Digit

�

�

�




�




AlphanumericIdent

Letter

�

�

Letter

�

�

Digit

�

_

�

�

�




�

'

�

�

�




�










�




Digit

one of 0123456789

�

�

�




Letter

one of ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

�

�

�




Comment

(*

�

�

�




any text that does not include (* or *) as a substring

�

�

�




�

�

Comment

�




*)

�

�

�




11



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 222 of 778 Quit

Exercise 4.2

1. Translate all the context-free grammars that we have so far seen into EBNF specifications.

2. Specify the language of regular expressions over a non-empty finite alphabet A in EBNF.

3. Given a textual EBNF specification write an algorithm to render each non-terminal as a syntax

diagram.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 223 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 224 of 778 Quit

4.7. Parsing

Introduction to Parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 225 of 778 Quit

Overview of Parsing

Since

• parsing requires the checking whether a given token stream conforms to the
rules of the grammar and

• since a context-free grammar may generate an infinite number of different
strings

any parsing method should be guided by the given input (token) string, so that
a deterministic strategy may be evolved.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 226 of 778 Quit

Parsing Methods

Two kinds of parsing methods

Top-down parsing Try to generate the given input sentence from the
start symbol of the grammar by applying the production rules.

Bottom-up parsing Try to reduce the given input sentence to the start
symbol by applying the rules in reverse

In general top-down parsing requires long look-aheads in order to do a determin-
istic guess from the given input token stream. On the other hand bottom-up
parsing yields better results and can be automated by software tools.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 227 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 228 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 229 of 778 Quit

4.8. Recursive Descent Parsing

Top-down Parsing

• Try to generate the given input sentence from the start symbol of the
grammar by applying the production rules.

• Not the most general.
• But most modern high-level programming languages are designed to be ef-
ficiently parsed by this method.

• Recursive-descent is the most frequently employed technique when language
C in which the compiler is written, supports recursion.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 230 of 778 Quit

Recursive Descent Parsing

• Suitable for grammars that are LL(1)a parseable.

• A set of (mutually) recursive procedures

• Has a single procedure/function for each non-terminal symbol

• Allows for syntax errors to be pinpointed more accurately than most other
parsing methods

aLeft-to-right Left-most derivations with 1 look-ahead



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 231 of 778 Quit

Caveats with RDP: Direct Left Recursion

Any left-recursion in the grammar can lead to infinite recursive calls during
which no input token is consumed and there is no return from the recursion.
That is, they should not be of the form

A −→ Aα

This would result in an infinite recursion with no input token consumed.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 232 of 778 Quit

Caveats with RDP: Indirect Left Recursion

• A production cannot even be indirectly left recursive. For instance the fol-
lowing is indirect left-recursion of cycle length 2.

Example 4.14
A −→ Bβ
B −→ Aα

where α, β ∈ (N ∪ T )∗.
• In general it should be impossible to have derivation sequences of the
form A ⇒ A1α1 · · · ⇒ An−1αn−1 ⇒ Aαn for nonterminal symbols
A,A1, . . . , An−1 for any n > 0.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 233 of 778 Quit

Caveats with RDP: Left Factoring

For RDP to succeed without backtracking, for each input token and each non-
terminal symbol there should be only one rule applicable;

Example 4.15 A set of productions of the form

A −→ aBβ | aCγ
where B and C stand for different phrases would lead to non-determinism. The
normal practice then would be to left-factor the two productions by introducing
a new non-terminal symbol A′ and rewrite the rule as

A −→ aA′
A′ −→ Bβ | Cγ

provided B and C generate terminal strings with different first symbols (oth-
erwise more left-factoring needs to be performed).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 234 of 778 Quit

A Simple Left-recursive Grammar

The following grammar is unambiguous and implements both left-associativity
and precedence of operators. G = ⟨{E, T,D}, {a, b,−, /(, )}, P, E⟩ whose
productions are

E → E−T | T
T → T/D| D
D → a | b | (E)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 235 of 778 Quit

Left Recursion Removal

The grammar G is clearly left-recursive in both the nonterminals E and T and
hence is not amenable to recursive-descent parsing.
The grammar may then have to be modified as follows:

E → TE′
E′ → −TE′ | ε
T → DT ′
T ′ → /DT ′ | ε
D → a | b | (E)

Now this grammar is no longer left-recursive and may then be parsed by a
recursive-descent parser.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 236 of 778 Quit

Recursive Descent Parsing: Determinization

RDP can be deterministic only if

• the input token lookahead uniquely determines the production to be applied.
•We need to define the FIRST symbols that will be generated by each pro-
duction.

• In the presence of ε productions, symbols that can FOLLOW a given non-
terminal symbol also need to be specified.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 237 of 778 Quit

Nullable

A nonterminal symbol X is nullable if it can derive the empty string, i.e.
X ⇒∗ ε. The following algorithm computes nullable(X) for each non-
terminal symbol. For convenience nullable is set to false for each terminal
symbol in the grammar. NULLABLE(N) is the set of boolean values spec-
ifying for each nonterminal symbol whether it is nullable.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 238 of 778 Quit

Algorithm 4.1

Nullable (N)
df
=

Require: CFG G = ⟨N, T, P, S⟩
Yields:NULLABLE(N) = {nullable(X) | X ∈ N}

for each a ∈ T
do nullable(a) := false ;

for each X ∈ N
do nullable(X) := ∃X → ε ∈ P

repeat
for each X → α1 . . . αk ∈ P
do

{
if ∀i : 1 ≤ i ≤ k : nullable(αi)
then nullable(X) := true

until NULLABLE(N) is unchanged



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 239 of 778 Quit

First

first(α) is the set of terminal symbols that can be the first symbol of any
string that α can derive, i.e. a ∈ first(α) if and only if there exists a derivation
α⇒∗ ax for any string of terminals x.
Notice that

• the computation of first requires nullable to be available. Also the first
of any terminal symbol is itself.

• also that if X → αZβ is a production then one cannot ignore the first(Z)
in computing first(X) especially if α ⇒∗ ε. Further if Z is also nullable
then first(β) ⊆ first(X).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 240 of 778 Quit

Algorithm 4.2

First (N ∪ T ) df
=

Require: CFG G = ⟨N, T, P, S⟩
Yields: FIRST (N ∪ T ) = {first(α) | α ∈ N ∪ T}

for each a ∈ T
do first(a) := {a}

for each X ∈ N
do first(X) := ∅

repeat
for each X → α1 . . . αk ∈ P
do

{
if ∀i′ : 1 ≤ i′ < i : nullable(αi′)
then first(X) := first(X) ∪ first(αi)

until FIRST (N) is unchanged



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 241 of 778 Quit

First And Follow

follow(X) for any nonterminal symbol X is the set of terminal symbols a
such that there exists a rightmost derivation of the form

S ⇒∗ · · ·Xa · · · ⇒∗

i.e. follow(X) is the set of all terminal symbols that can occur immediately
to the right of X in a rightmost derivation.
Notice that if there exists a a rightmost derivation of the form

S ⇒∗ · · ·Xα1 . . . αka · · · ⇒∗

such that α1, . . . , αk are all nullable then again we have

S ⇒∗ · · ·Xα1 . . . αka · · · ⇒∗ · · ·Xa · · · ⇒∗



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 242 of 778 Quit

Algorithm 4.3

Follow (N)
df
=

Require: CFG G = ⟨N, T, P, S⟩
Yields: FOLLOW (N ∪ T ) = {follow(α) | α ∈ N ∪ T}

for each α ∈ N ∪ T
do follow(α) := ∅

repeat
for each X → α1 . . . αk ∈ P

do



for i := 1 to k

do


if ∀i′ : i+ 1 ≤ i′ ≤ k : nullable(αi′)
then follow(αi) := follow(αi) ∪ follow(X)

for j := i+ 1 to k

do

{
if ∀i′ : i+ 1 ≤ i′ < j : nullable(αi′)
then follow(αi) := follow(αi) ∪ first(αj)

until FOLLOW (N ∪ T ) is unchanged



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 243 of 778 Quit

Recursive Descent Parsing: Pragmatics

• In any collection of (possibly) mutually recursive procedures, it is necessary
to clearly specify the entry point into the collection and the exits. So we
add a new start symbol S and a new end-of-file token EOF (represented by
a new terminal symbol $) with the unique production S → E$.

• Tokens are in upper case and the correspondence between the lexemes and
tokens is as follows:

ID(a) ↔ a , ID(b) ↔ b
LPAREN ↔ ( , RPAREN ↔ )
MINUS ↔ − , DIV IDE ↔ /
EOF ↔ $



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 244 of 778 Quit

4.9. A recursive descent parser

program Parse ;

var input token : token ;

func t i on get token : token ;
begin

(∗ l e x ∗)
end ;

procedure match ( expected ) ;
l a b e l 99 ;

begin
i f input token = expected then
begin

consume ( input token ) ;
i f input token <> EOF then input token := get token
e l s e goto 99

end
e l s e p a r s e e r r o r
99 :

end ;



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 245 of 778 Quit

(∗ The system of mutually r e c u r s i v e procedures beg ins here ∗)

procedure Express ion ; Forward ;

procedure D iv i s i on (∗ D −> a | b | (E) ∗)
begin

case input token o f
ID : match ( ID ) ;
LPAREN: Express ion ; match (RPAREN) ;
e l s e p a r s e e r r o r

end ;

procedure Term ta i l (∗ T’ −> /DT’ | <eps i l on> ∗)
begin

case input token o f
DIVIDE : D iv i s i on ; Term ta i l ;
MINUS: Term ta i l ; (∗ ep s i l o n product ion ∗)
RPAREN, ID : ; (∗ sk ip ep s i l o n product ion ∗)
e l s e p a r s e e r r o r

end ;

procedure Term (∗ T −> DT’ ∗)
begin

case input token o f
ID( a ) , ID(b ) , LPAREN: Div i s i on ; Term ta i l ;
e l s e p a r s e e r r o r



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 246 of 778 Quit

end ;

procedure Exp r e s s i o n t a i l (∗ E’ −> −TE’ | <eps i l on> ∗)
begin

case input token o f
MINUS: Term ; Exp r e s s i o n t a i l ;
RPAREN, ID : ; (∗ sk ip ep s i l o n product ion ∗)
e l s e p a r s e e r r o r

end ;

procedure Express ion (∗ E −> TE’ ∗)
begin

case input token o f
ID( a ) , ID(b ) , LPAREN: Term ; Exp r e s s i o n t a i l ;
e l s e p a r s e e r r o r

end ;

begin (∗ main S −> E$ ∗)
input token := get token ;
Express ion ; match (EOF)

end .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 247 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 248 of 778 Quit

4.10. Shift-Reduce Parsing

Bottom-Up Parsing Strategy

The main problem is to match parentheses of arbitrary nesting depths. This
requires a stacka data structure to do the parsing so that unbounded nested
parentheses and varieties of brackets may be matched.
Our basic parsing strategy is going to be based on a technique called shift-
reduce parsing.

shift. Refers to moving the next token from the input token stream into a
parsing stack.

reduce. Refers to applying a production rule in reverse i.e. given a production
X → α we reduce any occurrence of α in the parsing stack to X .

aIn the case of recursive-descent parsing the stack is provided by the recursion facility in the language of implementation.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 249 of 778 Quit

Reverse of Right-most Derivations

The result of a Bottom-Up Parsing technique is usually to produce a reverse
of the right-most derivation of a sentence.
Example For the ambiguous grammar G1 and corresponding to the right-
most derivation 2 we get

y + 4 ∗ z ⇐
I+4 ∗ z ⇐
E+4 ∗ z ⇐
E+C∗z ⇐
E+E∗z ⇐
E∗z ⇐
E∗I ⇐
E∗E ⇐
E ⇐



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 250 of 778 Quit

Fully Bracketed Expression

Consider an example of a fully bracketed expression generated by the simple
left-recursive grammar defined earlier.
The main questions are

•When to shift and when to reduce?

• If reduce then what production to use?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 251 of 778 Quit

Shift-reduce parsing: Invariant

Given a sentence generated by the grammar, at any stage of the pars-
ing, the contents of the stack concatenated with the rest of the input
token stream should be a sentential form of a right-most derivation of
the sentence.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 252 of 778 Quit

Parsing: FB0

−

/

b ( )a

/a )b )(−(

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Shift

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

a



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 253 of 778 Quit

Parsing: FB1

−

/

b ( )a

/a )b )(−

(

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Shift

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

a



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 254 of 778 Quit

Parsing: FB2

−

/

b ( )a

/a )b )(

(

a

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Shift

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 255 of 778 Quit

Parsing: FB3

−

/

b ( )a

/a )b )(

(

a

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

Reduce



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 256 of 778 Quit

Parsing: FB4

−

/

b ( )a

/a )b )(

(

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

D

Reduce



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 257 of 778 Quit

Parsing: FB5

−

/

b ( )a

/a )b )(

(

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

Reduce

T



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 258 of 778 Quit

Parsing: FB6

−

/

b ( )a

/a )b )(

(

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

Shift



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 259 of 778 Quit

Parsing: FB7

−

/

b ( )a

/a )b )(

(

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

Shift



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 260 of 778 Quit

Parsing: FB8

−

/

b ( )a

/ )b )

(

−

(

a

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

Reduce



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 261 of 778 Quit

Parsing: FB9

−

/

b ( )a

/ )b )

(

−

(

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

Reduce

D



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 262 of 778 Quit

Parsing: FB10

−

/

b ( )a

/ )b )

(

−

(

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

Reduce?

T



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 263 of 778 Quit

Parsing: FB11

−

/

b ( )a

/ )b )

(

−

(

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

Reduce? Shift



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 264 of 778 Quit

Parsing: FB12

−

/

b ( )a

)b )

(

−

(

/

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

Shift



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 265 of 778 Quit

Parsing: FB13

−

/

b ( )a

))

(

−

(

/

b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

Reduce



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 266 of 778 Quit

Parsing: FB14

−

/

b ( )a

))

(

−

(

/

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

Reduce

D



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 267 of 778 Quit

Parsing: FB15

−

/

b ( )a

))

(

−

(

/

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

D

Reduce?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 268 of 778 Quit

Parsing: FB16

−

/

b ( )a

))

(

−

(

/

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

D

No, REDUCE!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 269 of 778 Quit

Parsing: FB17

−

/

b ( )a

))

(

−

(

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

Reduce?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 270 of 778 Quit

Parsing: FB18

−

/

b ( )a

))

(

−

(

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

Shift

E



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 271 of 778 Quit

Parsing: FB19

−

/

b ( )a

)

(

−

(

)

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

E

Reduce



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 272 of 778 Quit

Parsing: FB20

−

/

b ( )a

)

(

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

Reduce

D



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 273 of 778 Quit

Parsing: FB21

−

/

b ( )a

)

(

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

Reduce?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 274 of 778 Quit

Parsing: FB22

−

/

b ( )a

)

(

−

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

T

No, REDUCE!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 275 of 778 Quit

Parsing: FB23

−

/

b ( )a

)

(

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

E

Shift



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 276 of 778 Quit

Parsing: FB24

−

/

b ( )a

(

)

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

Reduce

E



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 277 of 778 Quit

Parsing: FB25

−

/

b ( )a

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

ReduceD



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 278 of 778 Quit

Parsing: FB26

−

/

b ( )a

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

ReduceT



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 279 of 778 Quit

Parsing: FB27

−

/

b ( )a

r1. E E T

r2 T

r3 T T D

r4 T D

r5 D | | E

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible

Reduce

E

E



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 280 of 778 Quit

Unbracketed Expression

Consider an example of an unbracketed expression which relies on the prece-
dence rules as defined in the grammar.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 281 of 778 Quit

Parsing: UB0

−

/

b ( )

a −

a

a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 282 of 778 Quit

Parsing: UB1

−

/

b ( )a

− a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

Shifta

Principle:
Reduce 
whenever possible.
Shift only when
reduce is
impossible



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 283 of 778 Quit

Parsing: UB2

−

/

b ( )a

− a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

D Reduce by r5



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 284 of 778 Quit

Parsing: UB3

−

/

b ( )a

− a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

T Reduce by r4



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 285 of 778 Quit

Parsing: UB4

−

/

b ( )a

− a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

E Reduce by r2



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 286 of 778 Quit

Parsing: UB5

−

/

b ( )a

−

a / b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

E

Shift



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 287 of 778 Quit

Parsing: UB6

−

/

b ( )a

−

/ b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

E

Shifta



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 288 of 778 Quit

Parsing: UB7

−

/

b ( )a

−

/ b

r1. E E T

r2 E T

r3 T T D

r4 T D

r5 D | | E

E

D

E

Reduce by r5



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 289 of 778 Quit

Parsing: UB8

−

/

b ( )a

−

/ b

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T Reduce by r4



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 290 of 778 Quit

Parsing: UB8a

−

/

b ( )a

/ b

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T Reduce by r4
−



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 291 of 778 Quit

Parsing: UB9a

−

/

b ( )a

/ b

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

Reduce by r1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 292 of 778 Quit

Parsing: UB10a

−

/

b ( )a

b

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

Shift



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 293 of 778 Quit

Parsing: UB11a

−

/

b ( )a

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

Shiftb



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 294 of 778 Quit

Parsing: UB12a

−

/

b ( )a

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

D Reduce by r5



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 295 of 778 Quit

Parsing: UB13a

−

/

b ( )a

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T Reduce by r4



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 296 of 778 Quit

Parsing: UB14a

−

/

b ( )a

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

E Reduce by r2
Stu

ck
!

Get back!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 297 of 778 Quit

Parsing: UB14b

−

/

b ( )a

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

E Reduce by r2
Get back!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 298 of 778 Quit

Parsing: UB13b

−

/

b ( )a

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T Reduce by r4
Get back!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 299 of 778 Quit

Parsing: UB12b

−

/

b ( )a

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

D Reduce by r5
Get back!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 300 of 778 Quit

Parsing: UB11b

−

/

b ( )a

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

ShiftbGet back!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 301 of 778 Quit

Parsing: UB10b

−

/

b ( )a

b

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

ShiftGet back!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 302 of 778 Quit

Parsing: UB9b

−

/

b ( )a

/ b

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

Reduce by r1

Get back to
where you
once belonged!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 303 of 778 Quit

Parsing: UB8b

−

/

b ( )a

/ b

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T Reduce by r4
−

Shift instead
of reduce here!

Principle:modified

Reduce whenever possible, but
but depending upon 

lookahead

Shift−reduce 

conflict



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 304 of 778 Quit

Parsing: UB8

−

/

b ( )a

−

/ b

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T Reduce by r4



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 305 of 778 Quit

Parsing: UB9

−

/

b ( )a

−

/

b

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T

Shift



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 306 of 778 Quit

Parsing: UB10

−

/

( )a

−

/

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T

Shift

b

b



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 307 of 778 Quit

Parsing: UB11

−

/

b ( )a

−

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T

/

D Reduce by r5



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 308 of 778 Quit

Parsing: UB12

−

/

b ( )a

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

T Reduce by r3
−



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 309 of 778 Quit

Parsing: UB13

−

/

b ( )a

r1. E E T

r2 E T

r3 T T D

r4 D

r5 D | | E

EE

T

Reduce by r1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 310 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 311 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 312 of 778 Quit

4.11. Bottom-Up Parsing

Bottom-Up Parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 313 of 778 Quit

Parse Trees: 0

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

a− / ba

shift-reduce parsing:0



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 314 of 778 Quit

Parse Trees: 1

a − a / b

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

D

shift-reduce parsing:1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 315 of 778 Quit

Parse Trees: 2

a − a / b

T

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

D

shift-reduce parsing:2



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 316 of 778 Quit

Parse Trees: 3

a − a / b

T

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing:3



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 317 of 778 Quit

Parse Trees: 3a

a − a / b

T

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 318 of 778 Quit

Parse Trees: 3b

a − a / b

T

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 319 of 778 Quit

Parse Trees: 4

a − a

D

/ b

T

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 320 of 778 Quit

Parse Trees: 5

a − a

D

/ b

TT

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 321 of 778 Quit

Parse Trees: 5a

a − a

D

/ b

TT

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 322 of 778 Quit

Parse Trees: 5b

a − a

D

/ b

TT

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 323 of 778 Quit

Parse Trees: 6

a − a

D

/ b

D

TT

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 324 of 778 Quit

Parse Trees: 7

a − a

D

/ b

D

T

T

T

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 325 of 778 Quit

Parse Trees: 8

a − a

D

/ b

D

T

T

T

−r1. E E T

r2 E T

/r3 T T D b ( )aD | | Er5

r4 T D

E

E

D

shift-reduce parsing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 326 of 778 Quit

Parsing: Summary: 1

• All high-level languages are designed so that they may be parsed in this
fashion with only a single token look-ahead.

• Parsers for a language can be automatically constructed by parser-generators
such as Yacc, Bison, ML-Yacc and CUP in the case of Java.

• Shift-reduce conflicts if any, are automatically detected and reported by the
parser-generator.

• Shift-reduce conflicts may be avoided by suitably redesigning the context-
free grammar.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 327 of 778 Quit

Parsing: Summary: 2

• Very often shift-reduce conflicts may occur because of the prefix problem. In
such cases many parser-generators resolve the conflict in favour of shifting.

• There is also a possiblility of reduce-reduce conflicts. This usually happens
when there is more than one nonterminal symbol to which the contents of
the stack may reduce.

• A minor reworking of the grammar to avoid redundant non-terminal symbols
will get rid of reduce-reduce conflicts.

The Big Picture



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 328 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 329 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 330 of 778 Quit

4.12. Simple LR Parsing

Parsing Problems 1

The main question in shift-reduce parsing is:

When to shift and when to reduce?

To answer this question we require

•more information from the input token stream,

• to look at the rest of the input token stream and then take a decision.

But the decision has to be automatic. So the parser requires some rules. Once
given the rules we may construct the parser to follow the rules.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 331 of 778 Quit

Parsing Problems 2

But for a very large program it may be impossible to look at all the input before
taking a decision. So clearly the parser can look at only a limited amount of
the input to take a decision. So
The next question:

How much of the input token stream would the parser require?

Disregarding the very next input token as always available, the length of the
extra amount of input required for a shift-reduce decision is called the looka-
head.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 332 of 778 Quit

Parsing Problems 3

Once all the input has been read, the parser should be able to decide

in case of a valid sentence that it should only apply reduction rules and
attempt to reach the start symbol of the grammar only through reductions
and

in case of an invalid sentence that a grammatical error has occurred in
the parsing process

To solve this problem we augment every grammar with a new start symbol S
and a new terminal token $ and a new special rule. For our previous grammar
we have the new rule

S → E$



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 333 of 778 Quit

Augmented Grammar

Consider the following (simplified) augmented grammar with a single binary
operator − and parenthesis. We also number the rules.

1. S → E$
2. E → E−T
3. E → T
4. T → a
5. T → (E)

In an augmented grammar the start symbol does not occur on the right hand
side of any production.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 334 of 778 Quit

LR(0) Languages

LR(0) languages are those context-free languages that may be parsed by taking
deterministic shift-reduce decisions only based on the contents of the parsing
stack and without viewing any lookahead.

• “L” refers to reading the input from left to right,

• “R” refers to the (reverse) of rightmost derivation

• “0” refers to no-lookahead..

•Many simple CFLs are LR(0). But the LR(0) parsing method is too weak
for most high-level programming languages.

• But understanding the LR(0) parsing method is most crucial for understand-
ing other more powerful LR-parsing methods which require lookaheads for
deterministic shift-reduce decision-making



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 335 of 778 Quit

LR-Parsing Invariant

In any LR-parsing technique the following invariant holds.

For any syntactically valid sentence generated by the augmented gram-
mar, the concatenation of the stack contents with the rest of the input
gives a sentential form of a rightmost derivation.

Hence at any stage of the parsing if α ∈ (N ∪ T )∗ is the contents of the
parsing stack and x ∈ T ∗$ is the rest of the input that has not yet been read,
then αx is a sentential form of a right-most derivation.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 336 of 778 Quit

LR(0) Item

An LR(0) item consists of an LR(0) production rule with a special marker ▲
on the right hand side of rule.

• The marker is different from any of the terminal or nonterminal symbols of
the grammar.

• The marker separates the contents of the stack from the expected form of
some prefix of the rest of the input.

• Given a rule X → α, where X is a nonterminal symbol and α is a string
consisting of terminal and non-terminal symbols, an LR(0) item is of the
form

X → β▲γ

where α = βγ.

• For each rule X → α, there are |α|+ 1 distinct LR(0) items – one for each
position in α.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 337 of 778 Quit

What does an LR(0) item signify?

The LR(0) item
X → β▲γ

signifies that at some stage of parsing

• β is the string (of terminals and nonterminals) on the top of the stack and

• some prefix of the rest of the input can be generated by the sentential form
γ

so that whenever βγ appears on the stack, βγ may be reduced immediately
to X .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 338 of 778 Quit

LR0 Parsing Strategy

The LR0 parsing strategy is to

1. construct a DFA whose alphabet is N ∪ T ∪ {$}
2. use the parsing stack to perform reductions at appropriate points

The LR0 parsing table is hence a DFA with 3 kinds of entries.

shift i in which a terminal symbol is shifted on to the parsing stack and the
DFA moves to state i.

reduce j a reduction using the production rule j is performed

goto k Based on the contents of the stack, the DFA moves to state k.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 339 of 778 Quit

Favourite Example

Consider our favourite augmented grammar

1. S → E$
2. E → E−T
3. E → T
4. T → a
5. T → (E)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 340 of 778 Quit

Rule 1: Items

Rule 1
R1. S → E$

has the following three items

I1.1 S → ▲E$
I1.2 S → E▲$
I1.3 S → E$▲

one for each position on the right hand side of the rule.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 341 of 778 Quit

Rule 2: Items

Rule 2
R2. E → E−T

has the following items
I2.1 E → ▲E−T
I2.2 E → E▲−T
I2.3 E → E−▲T
I2.4 E → E−T▲



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 342 of 778 Quit

Rule 3: Items

Rule 3
R3. E → T

has just the items
I3.1 E → ▲T
I3.2 E → T▲



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 343 of 778 Quit

Rule 4: Items

Rule 4
R4. T → a

has the items
I4.1 T → ▲a
I4.2 T → a▲



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 344 of 778 Quit

Rule 5: Items

Rule 5
R5. T → (E)

has the items
I5.1 T → ▲(E)
I5.2 T → (▲E)
I5.3 T → (E▲)
I5.4 T → (E)▲



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 345 of 778 Quit

Significance of I1.*

I1.1 S → ▲E$. Hence
1. The parsing stack is empty and

2. the entire input (which has not been read yet) should be reducible to E
followed by the $.

I1.2 S → E▲$. Hence

1.E is the only symbol on the parsing stack and

2. the rest of the input consists of the terminating symbol $.

I1.3 S → E$▲. Hence

1. There is no input left to be read and

2. the stack contents may be reduced to the start symbol



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 346 of 778 Quit

DFA States: Initial and Final

• Clearly the initial state S1 of the DFA will correspond to item I1.1.

• There should be a state corresponding to item I1.2.

• There should be a goto transition on the nonterminal symbol E from the
initial state (corresponding to item I1.1) to the state corresponding to item
I1.2.

• The accepting state of the DFA will correspond to item item I1.3.

• There would also be a shift transition on $ from the state corresponding to
item I1.2 to the accepting state corresponding to item I1.3.

• There should be a reduce action using rule 1 when the DFA reaches the
state corresponding to item I1.3.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 347 of 778 Quit

Input Possibilities: 1

Consider item I1.1.

1. How will a grammatically valid sentence input reduce to E$?

From the grammar it is obvious that this can happen only if the input is of
a form such that

(a) it can be reduced to E−T (recursively) or

(b) it can be reduced to T

2. How can the input be reduced to the form T ?

3. How can the input be reduced to the form E−T ?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 348 of 778 Quit

Input Possibilities: 2

Consider item I1.1.

1. How will a grammatically valid sentence input reduce to E$?

2. How can the input be reduced to the form T ?

(a) If the enire input consists of only a then it could be reduced to T or

(b) If the entire input could be reduced to the form (E) then it could be
reduced to T .

3. How can the input be reduced to the form E−T ?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 349 of 778 Quit

Input Possibilities: 3

Consider item I1.1.

1. How will a grammatically valid sentence input reduce to E$?

2. How can the input be reduced to the form T ?

3. How can the input be reduced to the form E−T ?
(a) If the entire input could be split into 3 parts α, β and γ such that

i. α is a prefix that can be reduced to E, and

ii. β = −, and
iii. γ is a suffix that can be reduced to T

then it could be reduced to E−T



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 350 of 778 Quit

Closures of Items

Theoretically each item is a state of a NFA. The above reasoning leads to
forming closures of items to obtain DFA states, in a manner similar to the the
subset construction. Essentially all NFA states with similar initial behaviours
are grouped together to form a single DFA state.

NFA to DFA construction



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 351 of 778 Quit

Algorithm 4.4

ClosureOfItems (I)
df
=

Requires: Set I ⊆ I of LR(0) items of a CFG with rule set P
Ensures: Closure of I for a subset I ⊆ I of items

repeat
for each A→ α▲Xβ ∈ I
do

{
for each X → γ ∈ P
do I := I ∪ {X → ▲γ}

until no more changes occur in I



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 352 of 778 Quit

State Changes on Nonterminals

As in the case of the NFA to DFA construction with each state transition we
also need to compute closures on the target states.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 353 of 778 Quit

Algorithm 4.5

GoTo (I,X)
df
=

Requires: I ⊆ I of LR(0) items of a CFG G = ⟨N, T, P, S⟩, X ∈ N
Ensures: States of the DFA: Each state in the DFA is a closure of items

J := ∅;
for each A→ α▲Xβ ∈ I
do J := J ∪ {A→ αX▲β};

K := ClosureOfItems(J);
return (K)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 354 of 778 Quit

State S1

S1 = ClosureOfItems({S → ▲E$})
= {S → ▲E$, E → ▲E−T,E → ▲T,
T → ▲a, T → ▲(E)}

S1
(−→ ClosureOfItems({T → (▲E)}) = S2

S1
E−→ ClosureOfItems({S → E▲$, E → E▲−T}) = S3

S1
T−→ ClosureOfItems({E → T▲}) = S7

S1
a−→ ClosureOfItems({T → a▲}) = S8



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 355 of 778 Quit

State S2

S2 = ClosureOfItems({T → (▲E)})
= {T → ▲(E), E → ▲E−T,E → ▲T,
T → ▲a, T → ▲(E)}

S2
(−→ ClosureOfItems({T → (▲E)}) = S2

S2
E−→ ClosureOfItems({T → (E▲), E → E▲−T}) = S9

S2
T−→ ClosureOfItems({E → T▲}) = S7

S2
a−→ ClosureOfItems({T → a▲}) = S8



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 356 of 778 Quit

Other States

S3 = ClosureOfItems({S → E▲$, E → E▲−T})
= {S → E▲$, E → E▲−T}

However,
S3

−−→ ClosureOfItems({E → E−▲T})
and

ClosureOfItems({E → E−▲T})
= {E → E−▲T, T → (▲E), T → ▲a}
= S4

The closures of the other reachable sets of items are themselves.

• S5 = {E → E−T▲}
• S6 = {S → E$▲}
• S7 = {E → T▲}
• S8 = {T → a▲}
• S9 = {T → (E▲), E → E▲−T}
• S10 = {T → (E)▲}



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 357 of 778 Quit

Example: DFA

Parsing Table

 

S1

S E$

E E T

E T

T a

T ( E)

 

E E T

E T

T a

T ( E)

S2

T ( E)

S $

E T

E

E

S3
S6

S E$

S5

E E T

S4

E E T

T a

T (E)

S7

E T

S8

T a

S10

T (E)

S9

T )

E E

E(

T

(

E

$

−−
T

(

E )

a

T

a

T
a

−−



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 358 of 778 Quit

Example: Parsing Table

DFA

States Input Nonterminals
a ( ) $ − S E T

S1 S8 S2 G3 G7
S2 S8 S2 G9 G7
S3 ACC S4
S4 S8 S2 G5
S5 R2 R2 R2 R2 R2
S6 R1 R1 R1 R1 R1
S7 R3 R3 R3 R3 R3
S8 R4 R4 R4 R4 R4
S9 S10 S4
S10 R5 R5 R5 R5 R5

Note: All empty entries denote errors



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 359 of 778 Quit

Example 4.16 Consider the following simple input viz. a$. Here are the parsing steps.

DFA Parsing Table

S1 a$ Shift S8

S1 a S8 $ Reduce Rule 4

S1 T $ Goto S7

S1 T S7 $ Reduce Rule 3

S1 E $ Goto S3

S1 E S3 $ Accept



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 360 of 778 Quit

Example 4.17 Here is a slightly more complex input a− (a− a)$.
DFA Parsing Table

S1 a− (a− a)$ Shift S8

S1 a S8 −(a− a)$ Reduce Rule 4
S1 T −(a− a)$ Go to S7
S1 T S7 −(a− a)$ Reduce Rule 3
S1 E −(a− a)$ Go to S3
S1 E S3 −(a− a)$ Shift S4
S1 E S3 − S4 (a− a)$ Shift S2
S1 E S3 − S4 ( S2 a− a)$ Shift S8
S1 E S3 − S4 ( S2 a S8 −a)$ Reduce Rule 4
S1 E S3 − S4 ( S2 T −a)$ Go to S7
S1 E S3 − S4 ( S2 T S7 −a)$ Reduce Rule 3
S1 E S3 − S4 ( S2 E −a)$ Go to S9

DFA Parsing Table



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 361 of 778 Quit

DFA Parsing Table

S1 E S3 − S4 ( S2 E S9 −a)$ Shift S4

S1 E S3 − S4 ( S2 E S9 − S4 a)$ Shift S8

S1 E S3 − S4 ( S2 E S9 − S4 a S8 )$ Reduce Rule 4

S1 E S3 − S4 ( S2 E S9 − S4 T )$ Go to S5

S1 E S3 − S4 ( S2 E S9 − S4 T S5 )$ Reduce Rule 2

S1 E S3 − S4 ( S2 E )$ Go to S9

S1 E S3 − S4 ( S2 E S9 )$ Shift S10

S1 E S3 − S4 ( S2 E S9 ) S10 $ Reduce Rule 5

S1 E S3 − S4 T $ Go to S5

S1 E S3 − S4 T S5 $ Reduce Rule 2

S1 E $ Go to S3

S1 E S3 $ Accept



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 362 of 778 Quit

Exercise 4.3

1. Design a LR(0) parser for the grammar of palindromes. Identify whether there are any conflicts in

the parsing table.

2. Design a LR(0) parser for the grammar of Matching brackets and identify any conflicts.

3. Design a context-free grammar for a language on the terminal symbols a and b such that every string

has more as than bs. Design a LR(0) parser for this grammar and find all the conflicts, if any.

4. Since every regular expression may also be represented by a context-free grammar design an LR(0)

parser for comments in C.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 363 of 778 Quit

CFG = RLG + Bracket Matching

We use the idea that a context-free grammar is essentially a regular gram-
mar with parentheses matching to arbitrary depths. Hence a DFA with some
reductions introduced may work.
We modify the grammar to have a special terminal symbol called the end-
marker (denoted by $). Now consider the following simple grammar with a
single right-associative binary operator ˆ and bracket-matching.
We create a DFA of “items” which also have a special marker called the “cur-
sor” (▲).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 364 of 778 Quit

LR(0) with Right-Association

Consider the following grammar

1. S → E$
2. E → P ˆE
3. E → P
4. P → a
5. P → (E)

The following items make up the initial state S1 of the DFA

I1.1 S → ▲E$
I2.1 E → ▲P ˆE
I3.1 E → ▲P
I4.1 P → ▲a
I5.1 P → ▲(E)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 365 of 778 Quit

Shift-Reduce Conflicts in LR(0)

There is a transition on the nonterminal P to the state S2 which is made up
of the following items.

I2.2 E → P▲ˆE
I3.2 E → P▲

Then clearly the LR(0) parser suffers a shift-reduce conflict because

• item I2.2 indicates a shift action,

• item I3.2 produces a reduce action

This in contrast to the parsing table produced earlier where reduce actions took
place regardless of the input symbol. Clearly now that principle will have to be
modified.
The parsing table in this case would have a shift action if the input in state S2
is a ˆ and a reduce action for all other input symbols.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 366 of 778 Quit

FOLLOW Sets

We construct for each non-terminal symbol a set of terminal symbols that can
follow this non-terminal in any rightmost derivation. In the previous grammar
we have

follow(E) = {$, )}
follow(P ) = {ˆ}

Depending upon the input symbol and whether it appears in the FOLLOW set
of the non-terminal under question we resolve the shift-reduce conflict.
This modification to LR(0) is called Simple LR (SLR) parsing method. However
SLR is not powerful enough for many useful grammar constructions that are
encountered in many programming languages.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 367 of 778 Quit

Computing FIRST Sets

In order to compute FOLLOW sets we require FIRST sets of sentential forms
to be constructed too.

1. first (a) = {a} for every terminal symbol a.
2. ε ∈ first(X) if X → ε ∈ P .
3. If X → Y1Y2 · · ·Yk ∈ P then first(Y1) ⊆ first(X)

4. If X → Y1Y2 · · ·Yk ∈ P then for each i : i < k such that Y1Y2 · · ·Yi⇒ ε,
first(Yi+1) ⊆ first(X).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 368 of 778 Quit

Computing FOLLOW Sets

Once FIRST has been computed, computing FOLLOW for each non-terminal
symbol is quite easy.

1. $ ∈ follow(S) where S is the start symbol of the augmenteda grammar.

2. For each production rule of the form A → αBβ, first(β) − {ε} ⊆
follow(B).

3. For each production rule of the form A → αBβ, if ε ∈ first(β) then
follow(A) ⊆ follow(B).

4. For each production of the form A→ αB, follow(A) ⊆ follow(B).
aIn an augmented grammar, the start symbol does not occur on the right hand side of any production



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 369 of 778 Quit

if-then-else vs. if-then

Most programming languages have two separate constructs if-then and
if-then-else. We abbreviate the keywords and use the following symbols

Tokens Symbols
if i

then t

else e

booleans b
other expressions a



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 370 of 778 Quit

if-then-else vs. if-then (Contd.)

and construct the following two augmented grammars G1 and G2.

11. S → I $ 12. S → I $
21. I → U 22. I → i b t I E
31. I → M 32. I → a
41. U → i b t I 42. E → e I
51. U → i b t M e U 52. E → ε
61. M → i b t M e M
71. M → a



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 371 of 778 Quit

Exercise 4.4

1. Prove that grammar G2 is ambiguous.

2. Construct the LR(0) parsing tables for both G1 and G2 and find all shift-reduce conflicts in the parsing table.

3. Construct the FOLLOW sets in each case and try to resolve the conflicts.

4. Show that the following augmented grammar cannot be parsed (i.e. there are conflicts that cannot be resolved by FOLLOW sets) either by LR(0) or SLR parsers. (Hint
First construct the LR(0) DFA).

1. S → E$
2. E → L = R
3. E → R
4. L → ∗ R
5. L → a
6. R → L



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 372 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 373 of 778 Quit

5. Bindings, Attributes & Semantic Analysis

Bindings, Attributes & Semantic Analysis



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 374 of 778 Quit

Context-sensitive Grammars

Definition 5.1G = ⟨N, T , P, S⟩ is called a context-sensitive gram-
mar(CSG) if each production is of the form αXβ −→ αγβ, where

•X ∈ N is a nonterminal and

• α, β, γ ∈ (N ∪ T )∗ are sentential forms.
• The production is terminal if αγβ is a sentence

Note:

• α and β are the context within which the non-terminal X can generate the
sentential form γ.

• Every CFG is also a CSG with rules having empty contexts.

• The parsing problem for CSGs is known to be PSPACE-complete.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 375 of 778 Quit

A Context-sensitive Language

The language {anbncn|n > 0} is not context-free but can be generated by the
context-sensitive grammar G = ⟨N, {a, b, c}, P, S⟩ whose productions are

S −→ aBC | aSBC
aB −→ ab bB −→ bb
bC −→ bc cC −→ cc
CB −→ CZ CZ −→ WZ
WZ −→ WC WC −→ BC



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 376 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 377 of 778 Quit

Context-sensitive Analysis: Preamble

The Big Picture

• Every programming language can be used to program any computable func-
tion, assuming of course, it has

– unbounded memory, and

– unbounded time

• Context-free grammars are used to specify the phrase structure of a language
in a manner that is free of all context.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 378 of 778 Quit

Semantic Analysis

The Big Picture

1. Context-free grammars are not powerful enough to represent all computable
functions.

Example 5.2 The language {anbncn|n > 0} is not context-free but can
be generated by a context-sensitive grammar.

2. Semantic analysis is an essential step to

• producing the abstract syntax trees (AST)

• generating IR-code, since it requires the computation of certain bits and
pieces of information called attributes (which include information to be
entered into the symbol table or useful for error-handling)

• allocating memory for individual “objects” (variables, constants, struc-
tures, arrays etc.)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 379 of 778 Quit

5.1. Context-sensitive analysis and Semantics

The Big Picture

The parser for a context-free grammar transforms the token stream into a derivation tree (which we also call a concrete
parse tree)3. What we actually require in order to perform a computation is really an abstract syntax tree.

Example 5.3 Consider the two sentences a− a/b and a− (a/b) which are both valid sentences generated by the grammar
of our favourite example.

The (possibly modified grammar) required for parsing

• treats all tokens uniformly since the phrase structure of the grammar is all-important during the parsing process,

• introduces bracketing and punctuation marks for

– disambiguation and to override associativity when needed,

– to facilitate easy parsing
3The term parse tree is a much abused term used to refer to anything from a derivation tree to an abstract syntax tree (AST).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 380 of 778 Quit

But these symbols do not by themselves carry any semantic4 information.

• also has many more non-terminal symbols that are required for parsing, but which carry no semantic significance

– either for the end-user of the language

– or for the later phases of the compilation process.

Both expressions in example 5.3 have the same meaning (semantics) if we assume that the operations are subtraction
and division over integers respectively, and that division has higher precedence than subtraction. But the sentences are
syntactically different and correspondingly have different parse trees (see fig. 5). Both the expressions may be represented
by the following abstract syntax tree (AST) which gives the hierarchical structure of the expression.

Notice that in figure 6

• Every node in the AST is labelled by a token.

• The AST abstracts away from non-terminals which have significance only for the parsing of the expression and have no
semantic significance whatsoever,

• The AST abstracts away from bracketing and punctuation mechanisms and provides a hierarchical structure containing
only the essential operators and operands.

• The AST clearly distinguishes the operators (based on their arity) from the operands (which are leaves of the AST).

4Semantic analysis is another much abused term, often used by compiler writers to included even merely context-sensitive information.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 381 of 778 Quit

Context-sensitive Analysis: 1

The Big Picture

• There are aspects of a program that cannot be represented/enforced by a
context-free grammar definition. Examples include

– scope and visibility issues with respect to identifiers in a program.

– type consistency between declaration and use.

– correspondence between formal and actual parameters (example 5.2 is
an abstraction where an represents a function or procedure declaration
with n formal parameters and bn and cn represent two calls to the same
procedure in which the number of actual parameters should equal n).

• Many of these attributes are context-sensitive in nature. They need to be
computed and if necessary propagated during parsing from wherever they
are available.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 382 of 778 Quit

Context-sensitive Analysis: 2

The Big Picture

• The parser of a programming language provides the framework within which
the IR-code or even the target code is to be generated.

• The parser also provides a structuring mechanism that divides the task of
code generation into bits and pieces determined by the individual nontermi-
nals and production rules.

• The parser provides the framework from within which the semantic analysis
(which includes the bits and pieces of information that are required for code
generation) is performed



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 383 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 384 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 385 of 778 Quit

5.2. Binding

Binding

Binding is a central and fundamental concept in the definition of programming
languages and their semantics. Programs written in a programming language
deal with various entities – variables, subprograms, expressions, declarations,
commands, modules, objects, object classes etc. These entities carry with them
certain properties or values called attributes.

Definition 5.4 The binding of a program entity to an attribute is simply
the choice of the attribute from a set of possible attributes.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 386 of 778 Quit

Programming Language Entities

Programming languages vary widely in the various entities that they can deal
with, in the number of attributes that are bound to each entity, the times
at which these bindings take place (binding time) and the stability of these
bindings (whether the bindings are fixed or modifiable).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 387 of 778 Quit

Example 5.5

• A variable has various attributes such as its name, its type, a storage area where its value is stored, a size depending
on its type etc.

– A variable in an imperative language also has a binding to its location and each of these locations has a binding to
its value.

– A variable in a pure functional setting needs to be bound to its value.

– In addition a variable may be a formal parameter of some other entity such as a procedure or function and has certain
parameter-passing conventions associated with it.

• A procedure or function has a name. formal parameters of certain types, return parameters of certain types and
parameter-passing conventions associated with each formal parameter etc.

• A command has certain associated actions determined by its semantics.

The values of the attributes of each entity need to be set before it may be used. Setting the values of these attributes is
called binding. For each entity the attribute information is contained in a repository called a descriptor.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 388 of 778 Quit

Binding times

The binding of attributes to entities may occur at various times during compilation, linking, loading and execution. Broadly
speaking, early binding (also known as static binding and is performed before execution begins) ensures

• early detection and reporting of errors, rather than delaying them to execution time,

• greater run-time efficiency since the overheads of creating associations have been already dealt with statically (i.e. before
actual execution). Hence compiled code tends to run faster than interpreted code.

On the other hand, late binding

• allows for greater flexibility. In particular interpreters often perform late bindings and therefore allow flexible (and
interactive) code development. However,

• most programming languages that are not statically typed, tend to point out errors during run-time only if a given
operation is not possible. Inadvertent type errors introduced in the program may often lead to unexpected results
because of the lack of type-checking.

Example 5.6 Many implementations of Scheme and LiSP return an empty list when the tail of an empty list is required,
and they tend to return a null when accessing the head of an empty list.

Static or Early binding. These bindings occur before run-time. The term “static” refers to both binding that occurs
before exection and also to the stability of the binding (i.e. it is not modifiable once the binding is done).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 389 of 778 Quit

Language definition time. In most languages the control-flow constructs, the set of primitive types and the construc-
tors available for creating complex types are chosen at language definition time.

Example 5.7 The type “integer” is bound at the language definition time and refers (as closely as possible5) to its
mathematical counterpart namely the algebra of integers and their associated operations and relations.

Language implementation time. Most language manuals leave a variety of issues to the discretion of the language
implementor.

Example 5.8 The “integer” type refers to a finite set of values bound to a certain memory representation – e.g.
byte, full-word, double-word etc. This automatically constrains the set of values that can be termed “integer” in the
programming language.

Compile time or translation time binding. Compilers choose the mapping of high-level constructs to machine code
or IR code, including layout of statically defined data structures.

Example 5.9 Often at compile time only relocatable addresses (i.e. addresses specified as an offset from a possibly
unknown physical address in memory) are specified.

• Even for variables which have been statically declared and have a known fixed size, the actual physical address is
usually available only at load time.

• In languages that support recursion there may be several activations of the same subprogram present simultaneously
and hence many incarnations of the same variable are present simultaneously and each of them needs to be bound

5The set of integers is actually infinite, however the set of integers representable on a machine with a finite word-length is likely to be finite. This also affects the operations on integers and their behaviour
– e.g. overflow



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 390 of 778 Quit

to separate physical memory address. The actual binding of the each incarnation of the variable to its memory
location may get fixed only at run-time depending the activation involved.

Program writing time. Programmers of course choose names, algorithms and data structures and describe certain
high-level bindings (between names and data structures for example) at program writing time.

Example 5.10 In some languages which distinguish between reserved words and mere keywords (e.g. Pascal) the
type “integer” may be redefined in a user program and a different representation may be defined for it.

Link time. Most modern compilers support separate compilation – compiling different modules of a program at different
times. They depend on the availability of a library of standard routines. Program compilation is not complete until
various names occurring in the program which depend upon certain modules are appropriately bound by the linker.
The linker chooses the overall layout of the various modules with respect to each other and resolves inter-module
references and references to the names within modules which may be exported to the program.

Load time. Load time refers to the point at which the operating system loads the program into memory so that it may
be run. Most modern operating systems distinguish between virtual and physical addresses. Virtual addresses are
chosen at link time. The binding of virtual addresses to physical addresses takes place at load time.

Dynamic or Late or runtime binding. Many bindings are performed during execution. These are usually modifiable at
run-time (unlike static bindings).

Imperative variables. In most imperative languages variables are bound to a value at run-time and may be repeatedly
modified.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 391 of 778 Quit

Functional variables. In most pure functional languages, the value bound to a variable cannot be modified once a
binding is established, even though the location bound to a variable may be modified at run-time due to garbage
collection and compaction.

Entry into a sub-program or a block. Important classes of bindings take place at the time of entry into the sub-
program or block.

• binding of formal parameters to storage locations and

• binding of formal to actual parameters

At arbitrary points during execution. Some bindings may occur at any point during execution.

• Binding variables to values through assignment

• Binding of names to storage locations may change during garbage collection in languages (e.g. SML, LiSP, Java
etc.) which support automatic garbage collection.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 392 of 778 Quit

Introduction to Semantics

Context-free grammars (actually EBNF) are used to describe the rules that define the grammatical structure of phrases
and sentences in the language. However a manual for a programming language also needs to describe the meaning of each
construct in the language both alone and in conjunction with other constructs. This is to enable users of the language to
write correct programs and to be able to predict the effect of each construct. Implementors of the language need correct
definitions of the meanings to be able to construct correct implementations of the language.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 393 of 778 Quit

Syntax defines a well-formed program. Semantics defines the meaning of a syntactically correct program. However not
all well-formed programs have well defined meanings. Thus semantics also separates meaningful programs from merely
syntactically correct ones.

“Meaning” in the case of programming languages often refers to the execution behaviour of the program or the individual
constructs. This is useful from an implementation point of view. From a user programmer’s point of view It is possible to
view a programming language as a precise description mechanism that is independent of execution behaviour and restrict
meaning to the “effect” that a program or a construct has on some input (state).

While there are precise means of defining the syntax af the language, most language manuals describe the meanings of the
constructs in natural language prose. This unfortunately is not very desirable as natural language tends to be too verbose,
imprecise and very often ambiguous. On the other hand, if users and implementors have to be on the same page as regards
the behaviour of programs and individual programming constructs a precise and unambiguous definition is required for
this description. Typically a user programmer may misunderstand what a program or a construct will do when executed.
Implementors may interpret the meaning differently and hence different implementaions of the language may yield different
results on the same program.

While there are several formalisms for defining meanings of the constructs of a programming language, they all share the
following characteristics in order to maintain a certain uniformity and applicability for any program written in the language

• Meanings should be syntax-directed i.e. meanings should be based on the syntactical definition of the language in the
sense that it follows the hierarchy of the non-terminals in the grammar. The syntax (grammar) of the language therefore
provides the framework for the semantics of the language.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 394 of 778 Quit

• The meaning should be compositional i.e. the meaning of a compound construct should be expressed in terms of the
meanings of the individual components in the construct. Hence it is important that the meanings of the most basic
constructs be defined first so that the meanings of the compound constructs may be expressed in terms of the meanings
of the individual components of the compound construct.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 395 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 396 of 778 Quit

6. (Static) Scope Rules

Disjoint Scopes

let

in

end

val x = 10;
fun fun1  y =

let
...

in
...

end

fun fun2  z =
let ...
in ...
end

fun1 (fun2 x)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 397 of 778 Quit

Nested Scopes

let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 398 of 778 Quit

Overlapping Scopes

let

in

end

val x = 10;
fun fun1  y =

...

...

...

...

fun1 (fun2 x)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 399 of 778 Quit

Spannning

let

in

end

val x = 10;
fun fun1  y =

...

...

fun fun2  z =

...

...

fun1 (fun2 x)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 400 of 778 Quit

Scope & Names

• A name may occur either as being defined or as a use of a previously defined
name

• The same name may be used to refer to different objects.

• The use of a name refers to the textually most recent definition in the
innermost enclosing scope

diagram



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 401 of 778 Quit

Names & References: 0

let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 402 of 778 Quit

Names & References: 1

let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 403 of 778 Quit

Names & References: 2

let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 404 of 778 Quit

Names & References: 3

let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 405 of 778 Quit

Names & References: 4

let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 406 of 778 Quit

Names & References: 5

let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 407 of 778 Quit

Names & References: 6

let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 408 of 778 Quit

Names & References: 7

let

end

val x = 10;
fun fun1  y =

let
...

in
...

end

fun fun2  z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 409 of 778 Quit

Names & References: 8

let

end

val x = 10;
fun fun1  y =

let
...

in
...

end

fun fun2  z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 410 of 778 Quit

Names & References: 9

let

end

val x = 10;
fun fun1  y =

let
...

in
...

end

fun fun2  z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to Scope & Names



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 411 of 778 Quit

Definition of Names

Definitions are of the form
qualifier name . . .= body

• val name =
• fun name ( argnames ) =

• local definitions
in definition
end



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 412 of 778 Quit

Use of Names

Names are used in expressions.
Expressions may occur

• by themselves – to be evaluated

• as the body of a definition

• as the body of a let-expression

let definitions
in expression
end

use of local



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 413 of 778 Quit

Scope & local

end

local
fun fun1  y =

fun fun2  z =

in
fun fun3 x  =

...

fun2 ...
fun1 ...

...

...
fun1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 414 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 415 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 416 of 778 Quit

7. Symbol Table

Symbol Table

“The name of the song is called ‘Haddock's Eyes’.”

“Oh, that's the name of the song, is it?” Alice said, trying to feel interested.

“No, you don't understand,” the Knight said, looking a little vexed. “That's what the name is

called. The name of the song really is, ‘The Aged Aged Man’.”

Then I ought to have said ‘That's what the song is called’?” Alice corrected herself.

“No you oughtn't: that's quite another thing! The song is called ‘Ways and Means’: but that's
only what it's called, you know!”

“Well, what is the song, then?” said Alice, who was by this time completely bewildered.

“I was coming to that”, the Knight said. “The song really is ‘A-Sitting On a Gate’: and the

tune's my own invention.

Lewis Carroll, Through the Looking-Glass



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 417 of 778 Quit

Symbol Table:1

The Big picture

• The store house of context-sensitive and run-time information about every
identifier in the source program.

• All accesses relating to an identifier require to first find the attributes of the
identifier from the symbol table

• Usually organized as a hash tablea – provides fast access.

• Compiler-generated temporaries may also be stored in the symbol table
aSometimes other data-structures such as red-black trees are also used.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 418 of 778 Quit

Symbol Table:2

The Big picture

Attributes stored in a symbol table for each identifier:

• type
• size
• scope/visibility information
• base address
• addresses to location of auxiliary symbol tables (in case of records, proce-
dures, classes)

• address of the location containing the string which actually names the iden-
tifier and its length in the string pool



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 419 of 778 Quit

Symbol Table:3

The Big picture

• A symbol table exists through out the compilation (and run-time for debug-
ging purposes).

•Major operations required of a symbol table:

– insertion

– search

– deletions are purely logical (depending on scope and visibility) and not
physical

• Keywords are often stored in the symbol table before the compilation process
begins.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 420 of 778 Quit

Symbol Table:4

The Big picture

Accesses to the symbol table at every stage of the compilation process,

Scanning: Insertion of new identifiers.

Parsing: Access to the symbol table to ensure that an operand exists (decla-
ration before use).

Semantic analysis:

•Determination of types of identifiers from declarations

• type checking to ensure that operands are used in type-valid contexts.

• Checking scope, visibility violations.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 421 of 778 Quit

Symbol Table:5

The Big picture

IR generation: . Memory allocation and relativea address calculation.

Optimization: All memory accesses through symbol table

Target code: Translation of relative addresses to absolute addresses in terms
of word length, word boundary etc.

ai.e.relative to a base address that is known only at run-time



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 422 of 778 Quit

The hash table

Each name is hashed to an index of the hash table whose entry points to a
chain of records where each record contains

• a possible link to the next record on the chain (in case of collisions)

• the name of the identifier
• category (e.g. module, procedure, function, block, record, formal parameter
etc.)

• scope number of the identifier
• type information
• number of parameters (in case of functions, procedures, modules classes
etc.)

• visibility information (derived from qualifiers such as public, private)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 423 of 778 Quit

LeBlanc-Cook Symbol Table

32 Chapter 3 Names, Scopes, and Bindings

type

 T = record

  F1 : integer;

  F2 : real;

 end;

var V : T;

...

module M;

 export I; import V;

 var  I : integer;

 ...

 procedure P1 (A1 : real;

  A2t: integer) : real;

 begin

  ...

 end P1;

 ...

 procedure P2 (A3 : real);

 var  I : integer;

 begin

  ...

  with V do

      ...

  end;

  ...

 end P2;

 ...

end M;

Hash table Scope stack

H
as

h li
nk

Nam
e

Cat
eg

or
y

Sc
ope

Typ
e

O
th

er

Clo
se

d?

O
th

er

—

—

—

—

—

—

—

—

—

parameters

M 1

2 record V

5

3

1

mod

A1 4 (2)param

P1 3 (1)func

I

I

I

5 (1)var

3 (1)var

export1 (1)var

A2 4 (1)param

V 3 importvar

F2 2 (2)field

record scope 2T 1type

V 1var

integer 0 (1)

(2)

type

real 0type

—F1 2 (1)field

A3 5 (2) —param

P2 proc 3 parameters

with V

P2

M

Globals

X

Sc
ope

Figure 3.19 LeBlanc-Cook symbol table for an example program in a language like Modula-2. The scope stack represents
the referencing environment of the with statement in procedure P2. For the sake of clarity, the many pointers from type fields
to the symbol table entries for integer and real are shown as parenthesized (1)s and (2)s, rather than as arrows.

Copyright c� 2009 by Elsevier Inc. All rights reserved.

Corrected version of page from Michael Scott: Programming Language Pragmatics.

function
A2



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 424 of 778 Quit

Symbol Table: Scope Stack

Scope rules

• In addition to the hash table a scope stack is maintained for resolving non-
local references.

• The new scope number is pushed onto the scope stack when the compiler
enters a new scope and popped when exiting a scope.

• There could be unnamed scopes too (e.g. unnamed blocks with local dec-
larations, for-loops where the counting variable is local to the loop etc).

• Each (static) scope may be assigned a number in sequential order as it
is encountered in the program text starting with 0 assigned for the global
scope.

• The scope number of a nested scope is always greater than that of its parent.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 425 of 778 Quit

8. Runtime Structure



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 426 of 778 Quit

Run-time Structure

It is ever so. One of the poets, whose name I cannot recall, has a passage, which I am unable

at the moment to remember, in one of his works, which for the time being has slipped my mind,

which hits off admirably this age-old situation.

P. G. Wodehouse, The Long Hole in The Golf Omnibus



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 427 of 778 Quit

Run-time Environment

Memory for running a program is divided up as follows

Code Segment. This is where the object code of the program resides

Run-time Stack. Required in a dynamic memory management technique.
Especially required in languages which support recursion. All data whose
sizes can be determined statically before loading is stored in an appropriate
stack-frame (activation record).

Heap. All data whose sizes are not determined statically and all data that is
generated at run-time is stored in the heap.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 428 of 778 Quit

A Calling Chain

Main program

Globals

Procedure P2
Locals of P2

Procedure P21

Locals of P21

Body of P21

Call P21

Body of P2

Call P21

Locals of P1

Procedure P1

Body of P1

Call P2

Main body

Call P1

Main → P1 → P2 → P21 → P21



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 429 of 778 Quit

Run-time Structure: 1
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Body of P21

Main



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 430 of 778 Quit

Run-time Structure: 2
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Formal par of P1

Locals of P1

Return address to Main
Dynamic link to Main

Static link to Main

Body of P21

Main → P1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 431 of 778 Quit

Run-time Structure: 3
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Formal par of P1

Locals of P1

Return address to Main

Formal par P2

Locals of P2

Return address to last of P1

Dynamic link to Main

Dynamic link to last P1

Static link to Main

Static link to last P1

Body of P21

Main → P1 → P2



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 432 of 778 Quit

Run-time Structure: 4
Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Formal par of P1

Locals of P1

Return address to Main

Formal par P2

Locals of P2

Return address to last of P1

Formal par P21

Locals of P21

Return address to last of P2

Dynamic link to Main

Dynamic link to last P1

Dynamic link to last P2

Static link to Main

Static link to last P1

Static link last P2

Body of P21

Main → P1 → P2 → P21



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 433 of 778 Quit

Run-time Structure: 5

Main program

Globals

Main body

Procedure P2

Locals of P2

Procedure P21

Locals of P21

Body of P2

Procedure P1

Locals of P1

Body of P1

Globals

Formal par of P1

Locals of P1

Return address to Main

Formal par P2

Locals of P2

Return address to last of P1

Formal par P21

Locals of P21

Return address to last of P2

Formal par P21

Locals of P21

Return address to last of P21

Dynamic link to Main

Dynamic link to last P1

Dynamic link to last P2

Dynamic link to last P21

Static link to Main

Static link to last P1

Static link last P2

Static link to last P2

Body of P21

Main → P1 → P2 → P21 → P21

Back to the Big Picture



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 434 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 435 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 436 of 778 Quit

9. Abstract Syntax

Abstract Syntax Trees

The construction of ASTs from concrete parse trees is an example of a trans-
formation that can be performed using a syntax-directed definition that has no
side-effects.
Hence we define it using an attribute grammar.

Definition 9.1 An attribute grammar is a formal way to define semantic rules
and context-sensitive aspects of the language. Each production of the grammar
is associated with a set of values or semantic rules. These values and semantic
rules are collectively referred to as attributes.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 437 of 778 Quit

Abstract Syntax: 0

E → E−T | T
T → T/F | F
F → n | (E)

Suppose we want to evaluate an expression (4− 1)/2. What we actually
want is a tree that looks like this:

4 1

2−−

/



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 438 of 778 Quit

Evaluation: 0

4 1

2−−

/



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 439 of 778 Quit

Evaluation: 1

4 1

2−−

/



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 440 of 778 Quit

Evaluation: 2

2

/

3



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 441 of 778 Quit

Evaluation: 3

2

/

3



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 442 of 778 Quit

Evaluation: 4

1

But what we actually get during parsing is a tree that looks like . . .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 443 of 778 Quit

Abstract Syntax: 1

. . . THIS! E

T

T F

/

n
F

( )
E

E T
−

T
F

F
n

n

n n

/

n−−



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 444 of 778 Quit

Abstract Syntax

Shift-reduce parsing produces a concrete syntax tree from the rightmost deriva-
tion. The syntax tree is concrete in the sense that

• It contains a lot of redundant symbols that are important or useful only
during the parsing stage.

– punctuation marks

– brackets of various kinds

• It makes no distinction between operators, operands, and punctuation sym-
bols

On the other hand the abstract syntax tree (AST) contains no punctuations
and makes a clear distinction between an operand and an operator.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 445 of 778 Quit

Abstract Syntax: Imperative Approach

We use attribute grammar rules to construct the abstract syntax tree (AST)
from the parse tree.
But in order to do that we first require two procedures for tree construction.

makeLeaf(literal) : Creates a node with label literal and returns a pointer
or a reference to it.

makeBinaryNode(opr, opd1, opd2) : Creates a node with label opr
(with fields which point to opd1 and opd2) and returns a pointer or a refer-
ence to the newly created node.

Now we may associate a synthesized attribute called ptr with each terminal
and nonterminal symbol which points to the root of the subtree created for it.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 446 of 778 Quit

Abstract Syntax Trees: Imperative

E0 → E1−T ▷ E0.ptr := makeBinaryNode(−, E1.ptr, T.ptr)

E → T ▷ E.ptr := T.ptr

T0 → T1/F ▷ T0.ptr := makeBinaryNode(/, T1.ptr, F.ptr)

T → F ▷ T.ptr := F.ptr

F → (E) ▷ F.ptr := E.ptr

F → n ▷ F.ptr := makeLeaf (n.val)

The Big Picture



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 447 of 778 Quit

Abstract Syntax: Functional Approach

We use attribute grammar rules to construct the abstract syntax tree (AST)
functionally from the parse tree.
But in order to do that we first require two functions/constructors for tree
construction.

makeLeaf(literal) : Creates a node with label literal and returns the AST.

makeBinaryNode(opr, opd1, opd2) : Creates a tree with root label
opr (with sub-trees opd1 and opd2).

Now we may associate a synthesized attribute called ast with each terminal
and nonterminal symbol which points to the root of the subtree created for it.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 448 of 778 Quit

Abstract Syntax: Functional

E0 → E1−T ▷ E0.ast := makeBinaryNode(−, E1.ast, T.ast)

E → T ▷ E.ast := T.ast

T0 → T1/F ▷ T0.ast := makeBinaryNode(/, T1.ast, F.ast)

T → F ▷ T.ast := F.ast

F → (E) ▷ F.ast := E.ast

F → n ▷ F.ast := makeLeaf (n.val)

The Big Picture



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 449 of 778 Quit

Abstract Syntax: Alternative Functional

In languages like SML which support algebraic (abstract) datatypes, the func-
tions makeLeaf(literal) and makeBinaryNode(opr, opd1, opd2)
may be replaced by the constructors of an appropriate recursively defined
datatype AST.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 450 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 451 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 452 of 778 Quit

10. Syntax-Directed Translation

Syntax-directed Translation



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 453 of 778 Quit

Attributes

An attribute can represent anything we choose e.g.

• a string

• a number (e.g. size of an array or the number of formal parameters of a
function)

• a type

• a memory location

• a procedure to be executed

• an error message to be displayed

The value of an attribute at a parse-tree node is defined by the semantic rule
associated with the production used at that node.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 454 of 778 Quit

The Structure of a Compiler

Divide and conquer. A large-scale structure and organization of a compiler
or translator is defined by the structure of the parser in terms of the individual
productions of the context-free grammar that is used in parsing.

Syntax-directed definitions. The problem of context-sensitive and se-
mantic analysis is split up into the computation of individual attributes and
semantic rules in such a way that each production is associated with the
(partial) computation of one or more attributes.

Glue code. Finally it may require some “glue-code” to put together these
computations to obtain the final compiler/translator. The glue-code may
also be split into some that occurs in the beginning through global declara-
tions/definitions and some which need to be performed in the end.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 455 of 778 Quit

Syntax-Directed Definitions (SDD)

Syntax-Directed definitions are high-level specifications which specify the eval-
uation of

1. various attributes

2. various procedures such as

• transformations
• generating code

• saving information

• issuing error messages

They hide various implementation details and free the compiler writer from
explicitly defining the order in which translation, transformations, and code
generation take place.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 456 of 778 Quit

Kinds of Attributes

There are two kinds of attributes that one can envisage.

Synthesized attributes A synthesized attribute is one whose value de-
pends upon the values of its immediate children in the concrete parse tree.

A syntax-directed definition that uses only synthesized attributes is called
an S-attributed definition. See example

Inherited attributes An inherited attribute is one whose value depends
upon the values of the attributes of its parents or siblings in the parse tree.

Inherited attributes are convenient for expressing the dependence of a lan-
guage construct on the context in which it appears.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 457 of 778 Quit

What is Syntax-directed?

• A syntax-directed definition is a generalisation of a context-free grammar in
which each grammar symbol has an associated set of attributes, partitioned
into two subsets called synthesized and inherited attributes.

• The various attributes are computed by so-called semantic rules associated
with each production of the grammar which allows the computation of the
various attributes.

• These semantic rules are in general executed during

bottom-up (SR) parsing at the stage when a reduction needs to be
performed by the given rule and

top-down (RDP) parsing in the procedure before the next call or re-
turn from the procedure. (see subsection 4.9)

• A parse tree showing the various attributes at each node is called an anno-
tated parse tree.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 458 of 778 Quit

Forms of SDDs

In a syntax-directed definition, each grammar production rule X → α has
associated with it a set of semantic rules of the form b = f (a1, . . . , ak) where
a1, · · · , ak are attributes belonging to X and/or the grammar symbols of α.

Definition 10.1 Given a production X → α, an attribute a is

synthesized: a synthesized attribute of X (denoted X.a) or

inherited: an inherited attribute of one of the grammar symbols of α (de-
noted B.a if a is an attribute of B).

In each case the attribute a is said to depend upon the attributes a1, · · · , ak.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 459 of 778 Quit

Attribute Grammars

• An attribute grammar is a syntax-directed definition in which the functions
in semantic rules can have no side-effects.

• The attribute grammar also specifies how the attributes are propagated
through the grammar, by using graph dependency between the produc-
tions.

• In general different occurrences of the same non-terminal symbol in each
production will be distinguished by appropriate subscripts when defining the
semantic rules associated with the rule.

The following example illustrates the concept of a syntax-directed definition
using synthesized attributes.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 460 of 778 Quit

Attribute Grammars: Example

E0 → E1−T ▷ E0.val := E1.val − T.val

E → T ▷ E.val := T.val

T0 → T1/F ▷ T0.val := T1.val/F.val

T → F ▷ T.val := F.val

F → (E) ▷ F.val := E.val

F → n ▷ F.val := n.val

Note: The attribute n.val is the value of the numeral n computed during
scanning (lexical analysis).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 461 of 778 Quit

Attributes: Basic Assumptions

• Terminal symbols do not have any children in the concrete parse tree. At-
tributes of terminals supplied by the lexical analyser during scanning are
assumed be synthesized. They could however have inherited attributes.

• The start symbol of the augmented grammar can have only synthesized
attributes.

• In the case of LR parsing with its special start symbol, the start symbol
cannot have any inherited attributes because

1. it does not have any parent nodes in the parse tree and

2. it does not occur on the right-hand side of any production.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 462 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 463 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 464 of 778 Quit

10.1. Synthesized Attributes

Synthesized Attributes

Evaluating the expression (4− 1)/2 generated by the grammar for subtraction
and division



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 465 of 778 Quit

Synthesized Attributes: 0

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 466 of 778 Quit

Synthesized Attributes: 1

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

3 2 1

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 467 of 778 Quit

Synthesized Attributes: 2

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

3 2 1

4

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 468 of 778 Quit

Synthesized Attributes: 3

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

3 2 1

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 469 of 778 Quit

Synthesized Attributes: 4

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

3 2 1

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 470 of 778 Quit

Synthesized Attributes: 5

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

3 2 1

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 471 of 778 Quit

Synthesized Attributes: 6

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

3 2 1

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 472 of 778 Quit

Synthesized Attributes: 7

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

1

3 2 1

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 473 of 778 Quit

Synthesized Attributes: 8

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

1

3 2 1

3

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 474 of 778 Quit

Synthesized Attributes: 9

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

1

3

3 2 1

3

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 475 of 778 Quit

Synthesized Attributes: 10

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

1

3

3

3 2 1

3

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 476 of 778 Quit

Synthesized Attributes: 11

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

1

3 2

3

3 2 1

3

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 477 of 778 Quit

Synthesized Attributes: 12

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

1

3 2

23

3 2 1

3

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 478 of 778 Quit

Synthesized Attributes: 13

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

1

3 2

23

3 2 1

1

3

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 479 of 778 Quit

Synthesized Attributes: 14

ET F

T

T F

/

/

(

n
F

( )
E

E

) n

E T

−

−

T
F

F
n

n

4

4

4

4

4

1

1

1

3 2

23

3 2 1

1

1

3

Synthesized Attributes



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 480 of 778 Quit

An Attribute Grammar

E

T

T F

/

n
F

( )
E

E T
−

T
F

F
n

n4

4

4

4

1

1

1

3 2

23

1

1

3

E0 → E1−T ▷ E0.val := sub(E1.val, T.val)

E → T ▷ E.val := T.val

T0 → T1/F ▷ T0.val := div(T1.val, F.val)

T → F ▷ T.val := F.val

F → (E) ▷ F.val := E.val

F → n ▷ F.val := n.val



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 481 of 778 Quit

Synthesized Attributes Evaluation: Bottom-up

During bottom-up parsing synthesized attributes are evaluated as follows:

Bottom-up Parsers

1. Keep an attribute value stack along with the parsing stack.

2. Just before applying a reduction of the form Z → Y1 . . . Yk compute the
attribute values of Z from the attribute values of Y1, · · · , Yk and place
them in the same position on the attribute value stack corresponding to
the one where the symbol Z will appear on the parsing stack as a result
of the reduction.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 482 of 778 Quit

Synthesized Attributes Evaluation: Top-down

During top-down parsing synthesized attributes are evaluated as follows:

Top-down Parsers In any production of the form Z → Y1 . . . Yk, the parser
makes recursive calls to procedures corresponding to the symbols Y1 . . . Yk.
In each case the attributes of the non-terminal symbols Y1 . . . Yk are com-
puted and returned to the procedure for Z. Compute the synthesized at-
tributes of Z from the attribute values returned from the recursive calls.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 483 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 484 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 485 of 778 Quit

10.2. Inherited Attributes

Inherited Attributes: 0

C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

,



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 486 of 778 Quit

Inherited Attributes: 1

C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int

int
,



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 487 of 778 Quit

Inherited Attributes: 2

C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 488 of 778 Quit

Inherited Attributes: 3

C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 489 of 778 Quit

Inherited Attributes: 4

C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int

int

int



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 490 of 778 Quit

Inherited Attributes: 5

C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int

int

int

int

int

int



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 491 of 778 Quit

Inherited Attributes: 6

C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int

int

int

int

int

int

int

int



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 492 of 778 Quit

Inherited Attributes: 7

C-style declarations generating int x,y, z.

D → T L T → int | float
L → L,I | I I → x | y | z

T

int

L

z

L

L

x

I

y

I

D

I

,

,

x

D L T I

y z int

int int

int

int
,

int

int

int

int

int

int

int

int

int



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 493 of 778 Quit

Attribute Grammar: Inherited

T

int

L

z

L

L

x

I

y

I

D

I

,

int

int
,

int

int

int

int

int

int

int

int

int
D → TL ▷ L.in := T.type

T → int ▷ T.type := int.int

T → float ▷ T.type := float.f loat

L0 → L1,I ▷ L1 := L0.in

L → I ▷ I.in := L.in

I → id ▷ id.type := I.in



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 494 of 778 Quit

L-attributed Definitions

Definition 10.2 A grammar is L-attributed if for each production of the form
Y → X1 . . . Xk, each inherited attribute of the symbol Xj, 1 ≤ j ≤ k
depends only on

1. the inherited attributes of the symbol Y and

2. the synthesized or inherited attributes of X1, · · · , Xj−1.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 495 of 778 Quit

Why L-attributedness? 1

Y → X1 . . . Xk
Intuitively, if Xj.inh is an inherited attribute then

• it cannot depend on any synthesized attribute Y.syn of Y because it is
possible that the computation of Y.syn requires the value of Xj.inh leading
to circularity in the definition.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 496 of 778 Quit

Why L-attributedness? 2

Y → X1 . . . Xk
Intuitively, if Xj.inh is an inherited attribute then

• if the value of Xj.inh depends upon the attributes of one or more of the
symbols Xj+1, · · · , Xk then the computation of Xj.inh cannot be per-
formed just before the reduction by the rule Y → X1 . . . Xk during parsing.
Instead it may have to be postponed till the end of parsing.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 497 of 778 Quit

Why L-attributedness? 3

Y → X1 . . . Xk
Intuitively, if Xj.inh is an inherited attribute then

• it could depend on the synthesized or inherited attributes of any of the
symbols X1 . . . Xj−1 since they would already be available on the attribute
value stack.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 498 of 778 Quit

Why L-attributedness? 4

Y → X1 . . . Xk
Intuitively, if Xj.inh is an inherited attribute then

• it could depend upon the inherited attributes of Y because these inher-
ited attributes can be computed from the attributes of the symbols lying
below X1 on the stack, provided these inherited attributes of Y are also
L-attributed.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 499 of 778 Quit

A Non L-attributed Definition

Our attribute grammar for C-style declarations is definitely L-attributed. How-
ever consider the following grammar for declarations in Pascal and ML.

D → L:T ▷ L.in := T.type
T → int ▷ T.type := int.int

T → real ▷ T.type := real.real

L0 → L1,I ▷ L1 := L0.in

L → I ▷ I.in := L.in

I → id ▷ id.type := I.in

In the first semantic rule the symbol L.in is inherited from a symbol to its
right viz. T.type and hence is not L-attributed.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 500 of 778 Quit

Evaluating Non-L-attributed Definitions 1

In many languages like ML which allow higher order functions as values, a
definition not being L-attributed may not be of serious concern if the compiler
is written in such a language.
But in most other languages it is serious enough to warrant changing the
grammar of the language so as to replace inherited attributes by corresponding
synthesized ones.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 501 of 778 Quit

Evaluating Non-L-attributed Definitions 2

The language of the grammar of Pascal and ML declarations can be generated
as follows (transforming the inherited attribute into a synthesised one).

D → idL ▷ addtype(id, L.type)
L → :T ▷ L.in := T.type

L0 → ,id L1 ▷ L0.type := L1.type;

addtype(id, L1.type)
T → int ▷ T.type := int.int

T → real ▷ T.type := real.real



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 502 of 778 Quit

Dependency Graphs

In general, the attributes required to be computed during parsing could be syn-
thesized or inherited and further it is possible that some synthesized attributes
of some symbols may depend on the inherited attributes of some other sym-
bols. In such a scenario it is necessary to construct a dependency graph of the
attributes of each node of the parse tree and check that it is acyclic.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 503 of 778 Quit

Dependency Graph Construction

Algorithm 10.1
AttributeDependencyGraph

(T,A)
df
=

Requires: A parse tree T and the list A of attributes

Yields: An attribute dependency graph

for each node n of T

do

{
for each attribute a of node n

do Create an attribute node n.a

for each node n of T

do


for each semantic rule a := f (b1, . . . , bk)

do

{
for i := 1 to k
do Create a directed edge bi → n.a



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 504 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 505 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 506 of 778 Quit

11. Intermediate Representation

Intermediate Representation



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 507 of 778 Quit

Intermediate Representation

Intermediate representations are important for reasons of portability i.e. plat-
form (hardware and OS) independence.

• (more or less) independent of specific features of the high-level language.

Example. Java byte-code which is the instruction set of the Java Virtual
Machine (JVM).

• (more or less) independent of specific features of any particular target
architecture (e.g. number of registers, memory size)

– number of registers

–memory size

– word length

Typical Instruction set

https://www.javatpoint.com/java-bytecode
https://www.javatpoint.com/java-bytecode
https://en.wikipedia.org/wiki/Java_bytecode
https://www.javatpoint.com/internal-details-of-jvm
https://www.javatpoint.com/internal-details-of-jvm
https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 508 of 778 Quit

IR Properties: Low vs high

1. It is fairly low-level containing instructions common to all target architectures
and assembly languages.

How low can you stoop? . . .

2. It contains some fairly high-level instructions that are common to most high-
level programming languages.

How high can you rise?

3. To ensure portability across architectures and OSs.

Portability

4. To ensure type-safety

Type safety

Typical Instruction set



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 509 of 778 Quit

IR: Representation?

• No commitment to word boundaries or byte boundaries

• No commitment to representation of

– int vs. float,

– float vs. double,

– packed vs. unpacked,

– strings – where and how?.

Back to IR Properties



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 510 of 778 Quit

IR: How low can you stoop?

•most arithmetic and logical operations, load and store instructions etc.

• so as to be interpreted easily,

• the interpreter is fairly small,
• execution speeds are high,

• to have fixed length instructions (where each operand position has a specific
meaning).

Back to IR Properties



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 511 of 778 Quit

IR: How high can you rise?

• typed variables,

• temporary variables instead of registers.

• array-indexing,
• random access to record fields,

• parameter-passing,
• pointers and pointer management

• no limits on memory addresses

Back to IR Properties



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 512 of 778 Quit

IR Properties: Portability

1. How low can you stoop? . . .

2. How high can you rise?

3. To ensure portability across architectures and OSs.

• an unbounded number of variables and memory locations

• no commitment to Representational Issues

4. Type safety

Back to IR Properties



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 513 of 778 Quit

IR Properties: Type Safety

1. How low can you stoop? . . .

2. How high can you rise?

3. Portability

4. To ensure type-safety despite the hardware instruction set architectures.

•Memory locations are also typed according to the data they may contain,

• No commitment is made regarding word boundaries, and the structure of
individual data items.

Back to IR Properties Typical Instruction set



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 514 of 778 Quit

A typical instruction set: 1

Three address code: A suite of instructions. Each instruction has at most 3
operands.

• an opcode representing an operation with at most 2 operands

• two operands on which the binary operation is performed

• a target operand, which accumulates the result of the (binary) operation.

If an operation requires less than 3 operands then one or more of the operands
is made null.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 515 of 778 Quit

A typical instruction set: 2

• Assignments (LOAD-STORE)
• Jumps (conditional and unconditional)

• Procedures and parameters

• Arrays and array-indexing

• Pointer Referencing and Dereferencing

c.f. Java byte-code

https://en.wikipedia.org/wiki/Java_bytecode


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 516 of 778 Quit

A typical instruction set: 2.1

• Assignments (LOAD-STORE)
– x := y bop z, where bop is a binary operation

– x := uop y, where uop is a unary operation

– x := y, load, store, copy or register transfer

• Jumps (conditional and unconditional)

• Procedures and parameters

• Arrays and array-indexing

• Pointer Referencing and Dereferencing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 517 of 778 Quit

A typical instruction set: 2.2

• Assignments (LOAD-STORE)
• Jumps (conditional and unconditional)

– goto L – Unconditional jump,

– x relop y goto L – Conditional jump, where relop is a relational
operator

• Procedures and parameters

• Arrays and array-indexing

• Pointer Referencing and Dereferencing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 518 of 778 Quit

A typical instruction set: 2.3

• Assignments (LOAD-STORE)
• Jumps (conditional and unconditional)

• Procedures and parameters

– call p n, where n is the number of parameters

– return y, return value from a procedures call

– param x, parameter declaration

• Arrays and array-indexing

• Pointer Referencing and Dereferencing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 519 of 778 Quit

A typical instruction set: 2.4

• Assignments (LOAD-STORE)
• Jumps (conditional and unconditional)

• Procedures and parameters

• Arrays and array-indexing

– x := a[i] – array indexing for r-value

– a[j] := y – array indexing for l-value

Note: The two opcodes are different depending on whether l-value or r-
value is desired. x and y are always simple variables

• Pointer Referencing and Dereferencing



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 520 of 778 Quit

A typical instruction set: 2.5

• Assignments (LOAD-STORE)
• Jumps (conditional and unconditional)

• Procedures and parameters

• Arrays and array-indexing

• Pointer Referencing and Dereferencing

– x := ^y – referencing: set x to point to y

– x := *y – dereferencing: copy contents of location pointed to by y into
x

– *x := y – dereferencing: copy r-value of y into the location pointed to
by x

Picture



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 521 of 778 Quit

Pointers

x

x

*y

y

@z

*x

*x @z

*z
z

*z
z

x := ^y

x := *y

*x := y

*y@y

@z

*z

*z

x y

yx

x y

z

x

yy

*y

*y*y

@z
z



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 522 of 778 Quit

IR: Generation Basics

• Can be generated by recursive traversal of the abstract syntax tree.

• Can be generated by syntax-directed translation as follows:

For every non-terminal symbol N in the grammar of the source language
there exist two attributes

N.place , which denotes the address of a temporary variable where the
result of the execution of the generated code is stored

N.code , which is the actual code segment generated.

• In addition a global counter for the instructions generated is maintained as
part of the generation process.

• It is independent of the source language but can express target machine
operations without committing to too much detail.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 523 of 778 Quit

IR: Infrastructure 1

Given an abstract syntax tree T, with T also denoting its root node.

T.place address of temporary variable where result of execution of the T is
stored.

newtemp returns a fresh variable name and also installs it in the symbol table
along with relevant information

T.code the actual sequence of instructions generated for the tree T.

newlabel returns a label to mark an instruction in the generated code which
may be the target of a jump.

emit emits an instructions (regarded as a string).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 524 of 778 Quit

IR: Infrastructure 2

Colour and font coding of IR code generation process.

•Green: Nodes of the Abstract Syntax Tree

• Brown: Intermediate Representation i.e. the language of the “virtual
machine”

•Red: Variables and data structures of the language in which the IR code
generator is written

•Blue: Names of relevant procedures used in IR code generation.

•Black: All other stuff.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 525 of 778 Quit

IR: Expressions

E → id ▷

E.place := id.place;
E.code := emit()

E0 → E1 − E2 ▷

E0.place := newtemp;
E0.code := E1.code;

E2.code;
emit(E0.place := E1.place − E2.place)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 526 of 778 Quit

The WHILE Language

Assume there is a language of expressions (with start symbol E) over which
the statements are defined. For simplicity assume these are the only constructs
of the language.

S → id := E Assignment
| S; S Sequencing
| if E then S else Sfi Conditional
| while E do S od Iteration



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 527 of 778 Quit

IR: Assignment and Sequencing

S → id := E ▷

S.code := E.code
emit(id.place:=E.place)

S0 → S1; S2 ▷

S0.begin := S1.begin;
S0.after := S2.after;
S0.code := emit(S0.begin:)

S1.code
S2.code
emit(S0.after:)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 528 of 778 Quit

IR: Conditional

S0 → if E then S1 else S2fi ▷

S0.begin := newlabel;
S0.after := S2.after;
S0.code := emit(S0.begin:)

E.code;
emit(if E.place= 0 goto S2.begin);
S1.code;
emit(goto S0.after);
S2.code;
emit(S0.after:)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 529 of 778 Quit

Selective Evaluation.

Notice that the evaluation/execution of the Conditional is such that only one arm of the conditional is evaluated/executed
depending upon the truth value of the condition. This is perfectly consistent with the semantics of the conditional. It is
also consistent with the functional semantics of the conditional construct in FL(X). Similar remarks also apply to iteration
construct defined below.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 530 of 778 Quit

IR: Iteration

S0 → while E do S1 od ▷

S0.begin := newlabel;
S0.after := newlabel;
S0.code := emit(S0.begin:)

E.code
emit(if E.place= 0 goto S0.after);
S1.code;
emit(goto S0.begin);
emit(S0.after:)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 531 of 778 Quit

IR: Generation End

While generating the intermediate representation, it is sometimes necessary
to generate jumps into code that has not been generated as yet (hence the
address of the label is unknown). This usually happens while processing

• forward jumps

• short-circuit evaluation of boolean expressions

It is usual in such circumstances to either fill up the empty label entries in a
second pass over the the code or through a process of backpatching (which is
the maintenance of lists of jumps to the same instruction number), wherein the
blank entries are filled in once the sequence number of the target instruction
becomes known.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 532 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 533 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 534 of 778 Quit

12. The Pure Untyped Lambda Calculus: Basics

The Pure Untyped Lambda calculus

Curiously a systematic notation for functions is lacking in ordi-
nary mathematics. The usual notation ’f (x)’ does not distinguish
between the function itself and the value of this function for an un-
determined value of the argument.

Haskell B Curry Combinatory Logic vol 1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 535 of 778 Quit

12.1. Motivation for λ

Let us consider the nature of functions, higher-order functions (functionals) and the use of naming in mathe-

matics, through some examples.

Example 12.1 Let y = x2 be the squaring function on the reals. Here it is commonly understood that

x is the “independent” variable and y is the “dependent” variable when we look on it as plotting the

function f (x) = x2 on the x− y axis.

Example 12.2 Often a function may be named and written as f (x) = xn to indicate that x is the

independent variable and n is understood (somehow!) to be some constant. Here f , x and n are all

names with different connotations. Similarly in the quadratic polynomial ax2 + bx + c it is somehow

understood that a, b and c denote constants and that x is the independent variable. Implicitly by using

the names like a, b and c we are endeavouring to convey the impression that we consider the class

{ax2 + bx + c | a, b, c ∈ R} of all quadratic polynomials of the given form.

Example 12.3 As another example, consider the uni-variate polynomial p(x) = x2 + 2x + 3. Is this

polynomial the same as p(y) = y2 + 2y + 3? Clearly they cannot be the same since the product p(x).p(y)

is a polynomial in two variables whereas p(x).p(x) yields a uni-variate polynomial of degree 4. However,



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 536 of 778 Quit

in the case of the function f in example 12.1 it does not matter whether we define the squaring function

as f (x) = x2 or as f (y) = y2.

Example 12.4 The squaring function 12.1 is a continuous and differentiable real-valued function (in

the variable x) and its derivative is f ′(x) = 2x. Whether we regard f ′ as the name of a new function or

we regard the ′ as an operation on f which yields its derivative seems to make no difference.

Example 12.5 Referring again to the functions f (x) and f ′(x) in example 12.4, it is commonly un-

derstood that f ′(0) refers to the value of the derivative of f at 0 which is also the value the function f ′

takes at 0. Now let us consider f ′(x + 1). Going by the commonly understood notion, since f ′(x) = 2x,

we would have f ′(x + 1) = 2(x + 1). Then for x = 0 we have f ′(x + 1) = f ′(0 + 1) = f ′(1) = 2 × 1 = 2.

We could also think of it as the function f ′(g(0)) where g is the function defined by g(x) = x + 1, then

f ′(g(0)) = 2g(0) = 2 which yields the same result.

The examples above give us some idea of why there is no systematic notation for functions which distinguishes

between a function definition and the application of the same function to some argument. It simply did not

matter!

However, this ambiguity in mathematical notation could lead to differing interpretationas and results in the



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 537 of 778 Quit

context of mathematical theories involving higher-order functions (or “functionals” as they are often referred

to). One common higher order function is the derivative (the differentiation operation) and another is the

indefinite integral. Most mathematical texts emphasize the higher-order nature of a function by enclosing their

arguments in (square) brackets. Hence if O is a functional which transforms a function f (x) into a function

g(x), this fact is usually written O[f (x)] = g(x).

Example 12.6 Consider the functional E (on continuous real-valued functions of one real variable x)

defined as follows.

E[f (x)] =

 f ′(0) if x = 0
f (x)− f (0)

x
if x ̸= 0

The main question we ask now is “What does E[f (x + 1)] mean?”

It turns out that there are at least two ways of interpreting E[f (x + 1)] and unlike the case of example

12.5, the two interpretations actually yield different results!.

1. We may interpret E[f (x+ 1)] to mean that we first apply the transformation E to the function f (x)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 538 of 778 Quit

and then substitute x + 1 for x in the resulting expression. We then have the following.

E[f (x)]

=

 f ′(0) if x = 0
f (x)− f (0)

x
if x ̸= 0

=

{
0 if x = 0

x if x ̸= 0

= x

Since E[f (x)] = x, E[f (x + 1)] = x + 1.

2. Since f (x+1) = f (g(x)) where g(x) = x+1, we may interpret E[f (x+1)] as applying the operator E to

the function h(x) = f (g(x)). Hence E[f (x+1)] = E[h(x)] where h(x) = f (g(x)) = (x+1)2 = x2+2x+1.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 539 of 778 Quit

Noting that h′(x) = 2x + 2, h(0) = 1 and h′(0) = 2, we get

E[h(x)]

=

 h′(0) if x = 0
h(x)− h(0)

x
if x ̸= 0

=

{
2 if x = 0

x + 2 if x ̸= 0

= x + 2

The last example should clearly convince the reader that there is a need to disambiguate between a function

definition and its application.

12.2. The λ-notation

In function definitions the independent variables are “bound” by a λ which acts as a pre-declaration of the

name that is going to be used in the expression that defines a function.

The notation f (x), which is interpreted to refer to “the value of function f at x”, will be replaced by (f x) to



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 540 of 778 Quit

denote an application of a function f to the (known or unknown) value x.

In our notation of the untyped applied λ-calculus the functions and their applications in the examples in

subsection 12.1 would be rewritten as follows.

Squaring . λ x[x2] is the squaring function.

Example 12.2 . q
df
= λ a b c x[ax2+ bx+ c] refers to any quadratic polynomial with coefficients unknown or

symbolic. To obtain a particular member of this family such as 1x2 + 2x + 3, one would have to evaluate

(((q 1) 2) 3) which would yield λ x[1x2 + 2x + 3].

Example 12.3 . p
df
= λ x[x2 + 2x + 3]. Then p(x) would be written as (p x) i.e. as the function p applied

to the argument x to yield the expression x2 + 2x + 3. Likewise p(y) would be (p y) which would yield

y2 + 2y + 3. The products (p x).(p x) and (p x).(p y) are indeed different and distinct.

Example 12.5 Let us denote the operation of obtaining the derivative of a real-valued function f of one

independent variable x by the simple symbol D (instead of the more confusing
d

dx
). Then for any function

f , (D f ) would yield the derivative. In particular (D λ x[x2]) = λ x[2x] and the value of the derivative at

0 would be obtained by the application (λ x[2x] 0) which would yield 0. Likewise the value of the derivative



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 541 of 778 Quit

at x + 1 would be expressed as the application (λ x[2x] (x + 1)). Thus for any function f the value of its

derivative at x + 1 is simply the application ((D f ) (x + 1)).

The function g(x) = x + 1 would be defined as g
df
= λ x[x + 1] and (g x) = x + 1. Thus the alternative

definition of the derivative of f at x + 1 is simply the application ((D f ) (g x)).

Example 12.6 The two interpretations of the expression E[f (x + 1)] are respectively the following.

1. ((E f ) (x + 1)) and

2. ((E h) x) where h
df
= λ x[(f (g x))]



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 542 of 778 Quit

Pure Untyped λ-Calculus: Syntax

The language Λ of pure untyped λ-terms is the smallest set of terms built up
from an infinite set V of variables and closed under the following productions

L,M,N ::= x Variable

λx[L] Abstraction

(L M) Application

where x ∈ V .

• A Variable denotes a possible binding in the external environment.

• An Abstraction denotes a function which takes a formal parameter.

• AnApplication denotes the application of a function to an actual parameter.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 543 of 778 Quit

The language Λ

• The language Λ is “pure” (as opposed to being “applied”) in the sense
that it is minimal and symbolic and does not involve any operators other
abstraction and application.

•When used in the context of some algebraic system (e.g. the algebra of
integers or reals) it becomes applied. Hence the example of using the λ-
notation in the differential calculus is one of an applied λ-calculus.

• It is purely symbolic and no types have been specified which put restrictions
on the use of variables in contexts. We will look at typing much later.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 544 of 778 Quit

Free Variables

Definition 12.7 For any term N ∈ Λ the set of free variables and the set
of all variables are defined by induction on the structure of terms.

N FV (N) V ar(N)
x {x} {x}
λx[L] FV (L)− {x} V ar(L) ∪ {x}
(L M) FV (L) ∪ FV (M) V ar(L) ∪ V ar(M)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 545 of 778 Quit

Bound Variables

• The set of bound variables BV (N) = V ar(N)− FV (N).

• The same variable name may be used with different bindings in a single term
(e.g. (λx[x] λx[(x y)]))

• The brackets “[” and “]” delimit the scope of the bound variable x in the
term λx[L].

• The usual rules of static scope apply to λ-terms.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 546 of 778 Quit

Closed Terms and Combinators

Definition 12.8

• Λ0 ⊆ Λ is the set of closed λ-terms (i.e. terms with no free variables).

• A λ abstraction with no free variables is called a combinatora.

The λ-terms corresponding to D (section 12.2) and E (section 12.2) must be
combinators too.

aCombinators represent function definitions



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 547 of 778 Quit

Notational Conventions

To minimize use of brackets and parentheses unambiguously

1. λx1x2 . . . xm[L] denotes λx1[λx2[. . . λxm[L] · · · ]] i.e. L is the scope of
each of the variables x1, x2, . . . xm.

2. (L1 L2 · · ·Lm) denotes (· · · (L1 L2) · · ·Lm) i.e. application is left-
associative.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 548 of 778 Quit

Substitution

Definition 12.9 For any terms L,M and N and any variable x, the substi-
tution of the term N for a variable x is defined as follows:

{N/x}x ≡ N
{N/x}y ≡ y if y ̸≡ x
{N/x}λx[L] ≡ λx[L]
{N/x}λy[L] ≡ λy[{N/x}L] if y ̸≡ x and y ̸∈ FV (N)
{N/x}λy[L] ≡ λz[{N/x}{z/y}L] if y ̸≡ x and y ∈ FV (N) and

z is ’fresh’
{N/x}(L M) ≡ ({N/x}L {N/x}M)

Lemma 12.10 If L and N are pure λ-terms and x is a variable symbol then
{N/x}L is a pure λ-term.

Proof: By induction on the structure of the λ-term L. QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 549 of 778 Quit

Notes on Substitution

• In the above definition it is necessary to ensure that the free variables of N
continue to remain free after substitution i.e. none of the free variables of
N should be “captured” as a result of the substitution.

• The phrase “z is ’fresh’ ” may be taken to mean z ̸∈ FV (N) ∪ V ar(L).
• Λ is closed under the syntactic operation of substitution.

• Substitution is the only operation required for function application in the
pure λ-calculus.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 550 of 778 Quit

Compatibility

Definition 12.11 A binary relation ρ ⊆ Λ× Λ is said to be compatible if
L ρ M implies

1. for all variables x, λx[L] ρ λx[M ] and

2. for all terms N , (L N) ρ (M N) and (N L) ρ (N M).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 551 of 778 Quit

Compatible Closure

Definition 12.12 The compatible closure of a relation ρ ⊆ Λ×Λ is the
smallest (under the ⊆ ordering) relation ρc ⊆ Λ× Λ such that

ρ
L ρ M
L ρc M

ρAbs
L ρc M

λx[L] ρc λx[M ]

ρAppL
L ρc M

(L N) ρc (M N)
ρAppR

L ρc M
(N L) ρc (N M)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 552 of 778 Quit

Compatible Closure: Properties

Lemma 12.13

1. ρc ⊇ ρ.

2. The compatible closure of any relation is compatible.

3. If ρ is compatible then ρc = ρ.

Example 12.14

1.≡α is a compatible relation

2.→1
β is by definition a compatible relation.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 553 of 778 Quit

α-equivalence

Definition 12.15 (α-equivalence) ≡α⊆ Λ × Λ is the compatible closure
of the relation {(λx[L] ≡α λy[{y/x}L]) | y ̸∈ FV (L)}.
• α-equivalence implies that the the name(s) of the bound (called “indepen-
dent” in normal mathematics) variable(s) in a function definition is unim-
portanta. Hence λx[x2] ≡α λy[y2]b.

• As long as distinct bound variable names do not clash within the same or
nested scopes (where they need to be kept visible)c one can substitute the
other.

• Condition y ̸∈ FV (L) is necessary to ensure that a “free” y is not captured
by the new “bound” variable y.

ait corresponds exactly to uniformly replacing a variable name in a local context in a program by another variable name throughout the block
provided there is no clash of variable names.

bSee also ??
cWhenever they need to be ’collapsed’ e.g. when we need the value of f(x, x) as an instance of a function f(x, y), we need to explicitly apply f

to the argument pair (x, x).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 554 of 778 Quit

Function application: Basic β-Reduction

Definition 12.16

• Any (sub-)term of the form (λx[L] M) is called a β-redex

• Basic β-reduction is the relation on Λ

→β
df
= {((λx[L] M), {M/x}L′) | L′ ≡α L,L′, L,M ∈ Λ}

• It is usually represented by the axiom

(λx[L] M)→β {M/x}L′ (6)

where L′ ≡α L.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 555 of 778 Quit

Function application: 1-step β-Reduction

Definition 12.17 A 1-step β-reduction→1
β is the smallest relation (under the

⊆ ordering) on Λ such that

β1
L→β M

L→1
β M

β1Abs
L→1

β M

λx[L]→1
β λx[M ]

β1AppL
L→1

β M

(L N)→1
β (M N)

β1AppR
L→1

β M

(N L)→1
β (N M)

•→1
β is the compatible closure of basic β-reduction to all contexts.

•We will often omit the superscript 1 as understood.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 556 of 778 Quit

Untyped λ-Calculus: β-Reduction

Definition 12.18

• For all integers n ≥ 0, n-step β-reduction →n
β is defined by induction on

1-step β-reduction

βnBasis
L→0

β L
βnInduction

L→m
β M →1

β N

L→m+1
β N

(m ≥ 0)

• β-reduction →∗β is the reflexive-transitive closure of 1-step β-reduction.

That is,

β∗
L→n

β M

L→∗β M
(n ≥ 0)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 557 of 778 Quit

Computations and Normal Forms

• Loosely speaking, by a normal form we mean a term that cannot be “sim-
plified” further. In some sense it is like a “final answer”.

•We use β-reduction as the only way to “compute” final answers by simpli-
fication.

• There may be more than one β-redex in a term – this may lead to different
ways of computing the final answer.

Main Question: Do all the different ways of computing yield the same
answer?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 558 of 778 Quit

Function Calls

Let
f = λx[x2 + 1]

g = λy[3.y + 2]

Consider two different evaluations of the function call (f (g 4))

Call-by-value Call-by-name/text
(f (g 4)) (f (g 4))

= (f (3.4 + 2)) = (g 4)2 + 1

= (f 14) = (3.4 + 2)2 + 1

= (12 + 2)2 + 1

= 142 + 1 = 142 + 1
= 196 + 1 = 196 + 1
= 197 = 197



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 559 of 778 Quit

Function Composition

• Let F ≡ x2 + 1 be an expression involving one independent variable x and

let f
df
= λx[F ]

• Let G ≡ 3.y + 2 be an expression involving one independent variable y and

let g
df
= λy[G].

• Let h = λf [λg[λz[(f (g z))]. Then h is the composition of f and g i.e.
h = (f o g).

The function call (f (g a)) for some value a is (h a) which is exactly ((f o g) a).
Hence There are at least two different ways of evaluating the composition of
functions.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 560 of 778 Quit

Evaluating Function Composition

Call-by-value.

1. First evaluate (g a) = {a/y}G yielding a value b.

2.Then evaluate (f b) = {b/x}F yielding a value c.

Call-by-text.

1. First evaluate (f (g y)) = {(g y)/x}F = {G/x}F yielding expres-
sion H which contains only y as independent variable. This expres-

sion represents a function h
df
= λy[H ].

2. Evaluate (h a) = {a/y}H yielding a value d.

Main Question: Is c = d always?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 561 of 778 Quit

Untyped λ-Calculus: Normalization

Definition 12.19

• A term is called a β-normal form (β-nf) if it has no β-redexes.

• A term is weakly normalising (β-WN) if it can reduce to a β-normal form.

• A term L is strongly normalising (β-SN) if it has no infinite reduction se-
quence L→1

β L1→1
β L2→1

β · · ·
Intuitively speaking a β-normal form is one that cannot be “reduced” further.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 562 of 778 Quit

Some Combinators

Example 12.20

1. K
df
= λx y[x] a projection function.

2. I
df
= λx[x], the identity function.

3. S
df
= λx y z[((x z) (y z))], a generalized composition function

4. ω
df
= λx[(x x)]

are all β-nfs.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 563 of 778 Quit

Examples of Strong Normalization

Example 12.21

1. ((K ω) ω) is strongly normalising because it reduces to the normal form
ω in two β-reduction steps.

((K ω) ω)→1
β (λy[ω] ω)→1

β ω

2. Consider the term ((S K) K). Its reduction sequences go as follows:

((S K) K)→1
β λz[((K z) (K z))]→1

β λz[z] ≡ I



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 564 of 778 Quit

Unnormalized Terms

Example 12.22

1. Ω
df
= (ω ω) has no β-nf. Hence it is neither weakly nor strongly normalising.

2. (K (ω ω)) cannot reduce to any normal form because it has no finite re-
duction sequences. All its reductions are of the form

(K (ω ω))→1
β (K (ω ω))→1

β (K (ω ω))→1
β · · ·

or at some point it could transform to

(K (ω ω))→1
β λy[(ω ω)]→1

β λy[(ω ω)]→1
β · · ·

3. ((K ω) Ω) is weakly normalising because it can reduce to the normal form
ω but it is not strongly normalising because it also has an infinite reduction
sequence

((K ω) Ω)→1
β ((K ω) Ω)→1

β · · ·



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 565 of 778 Quit

Parameter Passing Mechanisms

• Call-by-name/text defines a Leftmost-outermost-computation, i.e. the
leftmost-outermost β-redex is chosen for application.

• Call-by-value defines a Leftmost-innermost-computation, i.e. the
leftmost-innermost β-redex is chosen for application.

To study these computation rules with regard to computing β-normal forms
we consider the following examples.

Example 12.23 Let

• L→l
β P ↛β yield a normal form P in l steps of β-reduction,

•M →m
β Q ↛β yield a normal form Q in m steps and

•N →n
β R ↛β yield a normal form R in n steps



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 566 of 778 Quit

Deterministic Computation Mechanisms: K

Example 12.24 For the term ((K L) Ω) we have the following reduction
sequences.

Call-by-name/text. Choose the leftmost-outermost β-redex

• ((K L) Ω)→1
β (λy[L] Ω)→1

β L→l
β P

Call-by-value. Choose the leftmost-innermost β-redex

• ((K L) Ω)→l
β ((K P ) Ω)→1

β (λy[P ] Ω)→∗β (λy[P ] Ω)→∗β · · ·
Here Call-by-value fails to produce the normal form even when it exists.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 567 of 778 Quit

Deterministic Computation Mechanisms: S

Example 12.25 For the term (((S L) M) N) we have the following reduc-
tion sequences if ((P R) (Q R)) is in β normal form.

Call-by-name/text. Choose the leftmost-outermost β-redex

• (((S L) M) N) →3
β ((L N) (M N)) →l

β ((P N) (M N)) →n
β

((P R) (M N))→m
β ((P R) (Q N))→n

β ((P R) (Q R))

Call-by-value. Choose the leftmost-innermost β-redex

• (((S L) M) N) →l
β (((S P ) M) N) →m

β (((S P ) Q) N) →n
β

(((S P ) Q) R)→3
β ((P R) (Q R))

Call-by-value takes fewer steps to reduce to the normal form because there is
no duplication of the argument N .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 568 of 778 Quit

Contrariwise

Example 12.26 However consider the term ((K L) M).

Call-by-name/text. In l + 2 steps we get the normal form.

• ((K L) M)→1
β (λy[L] M)→1

β L→l
β P

Call-by-value.We get the normal form in l +m + 2 steps.

• ((K L) M) →l
β ((K P ) M) →m

β ((K P ) Q) →1
β (λy[P ] Q) →1

β

L→l
β P

Here Call-by-value takes an extra m steps reducing an argument M that
has no influence on the computation!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 569 of 778 Quit

Some Morals, Some Practice

In general,

• Call-by-value (example 12.24) may fail to terminate even if there is a possi-
bility of termination.

• If Call-by-value terminates, then Call-by-name will also terminate. More
precisely, if a normal form exists then Call-by-name will definitely find it.

• However, Call-by-value when it does terminate may terminate faster (ex-
ample 12.25) than Call-by-name/text provided all arguments need to be
evaluated in both cases.

• It is also easier to implement Call-by-value rather than Call-by-name under
static scope rules in the presence of non-local references.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 570 of 778 Quit

β-nf: Characterisation

The following theorem is easy to prove.

Theorem 12.27 The class β-nf ⊆ Λ is the smallest class such that

• V ⊆ β-nf i.e. all variables are in β-nf,

• if L1, . . . , Lm ∈ β-nf then for any variable x, (x L1 . . . Lm) ∈ β-nf and
• if L ∈ β-nf then λx[L] ∈ β-nf.

■



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 571 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 572 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 573 of 778 Quit

13. Notions of Reduction

Notions of Reduction



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 574 of 778 Quit

Reduction

For any function such as p = λx[3.x.x + 4.x + 1],

(p 2) = 3.2.2 + 4.2 + 1 = 21

However there is something asymmetric about the identity,

•While (p 2) deterministically produces 3.2.2 + 4.2 + 1 which in turn

• simplifies deterministically to 21,



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 575 of 778 Quit

Reduction Induced Equality

• It is not possible to deterministically infer that 21 came from (p 2). It
would be more accurate to refer to this sequence as a reduction sequence
and capture the asymmetry as follows:

(p 2)⇝ 3.2.2 + 4.2 + 1⇝ 21

• And yet they are behaviourally equivalent and mutually substitutable in all
contexts (referentially transparent).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 576 of 778 Quit

Reduction Vs. Equality

1. Reduction (specifically β-reduction) captures this asymmetry.

2. Since reduction produces behaviourally equal terms we have the following
notion of equality.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 577 of 778 Quit

Untyped λ-Calculus: β-Equality

Definition 13.1 β-equality or β-conversion (denoted =β) is the smallest
equivalence relation containing β-reduction (→∗β).
The following are equivalent definitions.

1.=β is the reflexive-symmetric-transitive closure of 1-step β-reduction.

2.=β is the smallest relation defined by the following rules.

=β Basis
L→∗β M
L =β M

=β Reflexivity
L =β L

=β Symmetry
L =β M

M =β L
=β Transitivity

L =β M, M =β N

L =β N



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 578 of 778 Quit

Compatibility of Beta-reduction and Beta-Equality

Theorem 13.2 β-reduction→∗β and β-equality =β are both compatible rela-
tions.

□

Lemma 13.3 (Substitution lemma). If L →∗β M (resp. L =β M)

then

1. x ̸∈ FV (L) implies x ̸∈ FV (M),

2. {N/x}L→∗β {N/x}M (resp. {N/x}L =β {N/x}M),

3. {L/x}N →∗β {M/x}N (resp. {L/x}N =β {M/x}N).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 579 of 778 Quit

Proof of theorem 13.2

Proof: (→∗
β) Assume L→∗

β M . By definition of β-reduction L→n
β M for some n ≥ 0. The proof proceeds by induction on n

Basis. n = 0. Then L ≡M and there is nothing to prove.

Induction Hypothesis (IH).

The proof holds for all k, 0 ≤ k ≤ m for some m ≥ 0.

Induction Step. For n = m+ 1, let L ≡ L0 →m
β Lm →1

β M . Then by the induction hypothesis and the compatibility of →1
β we have

By definition of →n
β

for all x ∈ V , λx[L]→m
β λx[Lm], λx[Lm]→1

β λx[M ] λx[L]→n
β λx[M ],

for all N ∈ Λ, (L N)→m
β (Lm N), (Lm N)→1

β (M N) (L N)→n
β (M N)

for all N ∈ Λ, (N L)→m
β (N Lm), (N Lm)→1

β (N M) (N L)→n
β (N M)

End (→∗
β)

(=β) Assume L =β M . We proceed by induction on the length of the proof of L =β M using the definition of β-equality.

Basis. n = 1. Then either L ≡M or L→∗
β M . The case of reflexivity is trivial and the case of L→∗

β M follows from the previous proof.

Induction Hypothesis (IH).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 580 of 778 Quit

For all terms L and M , such that the proof of L =β M requires less than n steps for n > 1, the compatibility result holds.

Induction Step. Suppose the proof requires n steps and the last step is obtained by use of either =β Symmetry or =β Transitivity on some
previous steps.

Case (=β Symmetry). Then the (n− 1)-st step proved M =β L. By the induction hypothesis and then by applying =β Symmetry to each
case we get

By =β Symmetry
for all variables x, λx[M ] =β λx[L] λx[L] =β λx[M ]
for all terms N , (M N) =β (L N) (L N) =β (M N)
for all terms N , (N M) =β (N L) (N M) =β (N L)

Case (=β Transitivity). Suppose L =β M was inferred in the n-th step from two previous steps which proved L =β P and P =β M for some
term P . Then again by induction hypothesis and then applying =β Transitivity we get

By =β Transitivity
for all variables x, λx[L] =β λx[P ], λx[P ] =β λx[M ] λx[L] =β λx[M ]
for all terms N , (L N) =β (P N), (P N) =β (M N) (L N) =β (M N)
for all terms N , (N L) =β (N P ), (N P ) =β (N M) (N L) =β (N P )

End (=β)

QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 581 of 778 Quit

Eta reduction

Given any term M and a variable x ̸∈ FV (M), the syntax allows us to
construct the term λx[(M x)] such that for every term N we have

(λx[(M x)] N)→1
β (M N)

In other words,

(λx[(M x)] N) =β (M N) for all terms N

We say that the two terms λx[(M x)] andM are extensionally equivalent
i.e. they are syntactically distinct but there is no way to distinguish between
their behaviours.
So we define basic η-reduction as the relation

λx[(L x)]→η L provided x ̸∈ FV (L) (7)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 582 of 778 Quit

Eta-Reduction and Eta-Equality

The following notions are then defined similar to the corresponding notions for
β-reduction.

• 1-step η-reduction →1
η is the closure of basic η-reduction to all contexts,

•→n
η is defined by induction on 1-step η-reduction

• η-reduction →∗η is the reflexive-transitive closure of 1-step η-reduction.

• the notions of strong and weak η normal forms η-nf.

• the notion of η-equality or η-conversion denoted by =η.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 583 of 778 Quit

The Paradoxical Combinator

Example 13.4 Consider Curry’s paradoxical combinator

YC
df
= λf [(C C)] where C

df
= λx[(f (x x))]

For any term L we have

(YC L) →1
β (λx[(L (x x))] λx[(L (x x))])

≡α (λy[(L (y y))] λx[(L (x x))])

→1
β (L (λx[(L (x x))] λx[(L (x x))])︸ ︷︷ ︸)

=β (L
︷ ︸︸ ︷
(YC L))

Hence (YC L) =β (L (YC L)). However (L (YC L)) will never β-reduce
to (YC L).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 584 of 778 Quit

Exercise 13.1

1. Prove that η-reduction and η-equality are both compatible relations.

2. Prove that η-reduction is strongly normalising.

3. Define basic βη-reduction as the application of either (6) or (7). Now prove that →1
βη, →∗βη and =βη are all compatible

relations.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 585 of 778 Quit

13.1. Recursion and the Y combinator

Since the lambda calculus only has variables and expressions and there is no place for names themselves (we use names such
as K and S for our convenience in discourse, but the language itself allows only (untyped) variables and is meant to define
functions anonymously as expressions in the language). In such a situation, recursion poses a problem in the language.

Recursion in most programming languages requires the use of an identifier which names an expression that contains a call to
the very name of the function that it is supposed to define. This is at variance with the aim of the lambda calculus wherein
the only names belong to variables and even functions may be defined anonymously as mere expressions.

This notion of recursive definitions may be generalised to a system of mutually recursive definitions.

The name of a recursive function, acts as a place holder in the body of the definition (which in turn has the name acting as
a place holder for a copy of the body of the definition and so on ad infinitum). However no language can have sentences of
infinite length.

The combinator YC helps in providing copies of any lambda term L whenever demanded in a more disciplined fashion.
This helps in the modelling of recursive definitions anonymously. What the YC combinator provides is a mechanism for
recursion “unfolding” which is precisely our understanding of how recursion should work. Hence it is easy to see from
(YC L) =β (L (YC L)) that

(YC L) =β (L (YC L)) =β (L (L (YC L))) =β (L (L (L (YC L)))) =β · · · (8)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 586 of 778 Quit

Many other researchers have defined other combinators which mimic the behaviour of the combinator YC. Of particular

interest is Turing’s combinator YT
df
= (T T) where T

df
= λx y[(y ((x x) y))]. Notice that

(T T)
≡ (λx y[(y ((x x) y))] T)
→1

β λy[(y ((T T) y))]

≡ λy[(y (YT y))]

from which, by compatible closure, for any term L we get

(YT L)
≡ ((T T) L)
→∗β (λy[(y (YT y))] L)

→1
β (L (YT L))

Thus YT is also a recursion unfolding combinator yielding

(YT L) =β (L (YT L)) =β (L (L (YT L))) =β (L (L (L (YT L)))) =β · · ·



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 587 of 778 Quit

Recursion and The Fixed point theorem

Theorem 13.5 For every (untyped) λ-term L, there exists a fixed point FL
such that FL =β (L FL).

Proof: Assume x and y are not free in L. Then

FL ≡α (λ x[(L (x x))] λ x[(L (x x))])

≡α (λ x[(L (x x))] λ y[(L (y y))])

−→1
β (L (λ y[(L (y y))] λ y[(L (y y))]))

≡α (L FL)

Hence FL =β (L FL). QED

By abstracting out L we get a function that can generate fixed-points.

Corollary 13.6 YC is a fixed-point combinator which generates a fixed point
for every lambda term i.e (YC L) −→1

β FL.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 588 of 778 Quit

14. Representing Data in the Untyped Lambda Calculus

The Boolean Constants

True
df
= λx[λy[x]] (True)

False
df
= λx[λy[y]] (False)

Negation

Not
df
= λx[((x False) True)] (not)

The Conditional



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 589 of 778 Quit

Ite
df
= λx y z[(x y z)] (ite)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 590 of 778 Quit

Exercise 14.1

1. Prove that

(Not True) =βη False (9)

(Not False) =βη True (10)

2. Prove that

(Ite True L M) =βη L (11)

(Ite False L M) =βη M (12)

(13)

3. We know from Theorem 7.7 that the boolean constants and the conditional form a functionally

complete (adequate) set for propositional logic. Use the conditional combinator Ite and the constant

combinators True and False to express the following boolean operators upto βη-equivalence.

• Not. Verify that it is α-equivalent to (not).

• And: conjunction

• Or: disjunction

http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf#p329


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 591 of 778 Quit

• Xor: exclusive OR

4. Prove the de Morgan laws for the boolean combinators, using only βη-reductions.

5. Does ((And K) I) have a βη-normal form?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 592 of 778 Quit

The Church Numerals There are many ways to represent the natural numbers as lambda expressions.

Here we present Church’s original encoding of the naturals in the λ-calculus. We represent a natural n as a

combinator n.

0
df
= λf x[x] (numeral-0)

1
df
= λf x[(f x)] (numeral-1)

. . .

n + 1
df
= λf x[(f (fn x))] (numeral-n+1)

. . .

where (fn x) denotes the n-fold application of f to x. That is, (fn x) = (f (f . . . (f x) . . .))︸ ︷︷ ︸
f applied n times

.

“Arithmagic”

For any function g and Church numeral n, (n g) β-reduces to λx[(gn x)] which is the n-fold application of g.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 593 of 778 Quit

We follow the operators of Peano arithmetic and the postulates of first order arithmetic (as treated in any course

in first order logic) and obtain “magically”6 the following combinators for the basic operations of arithmetic

and checking for 0.

IsZero
df
= λn[(n λx[False] True)] (IsZero)

Succ
df
= λn f x[((n f ) (f x))] (Succ)

Add
df
= λm n f x[((m f ) (n f x))] (Add)

Mult
df
= λm n f [(m (n f ))] (Mult)

Pwr
df
= λm n[(n m)] (Pwr)

The only way to convince oneself that the above are correct, is to verify that they do produce the expected

results.
6There are geniuses out there somewhere who manage to come up with these things. Don’t ask me how they thought of them!

http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf
http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf


Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 594 of 778 Quit

Exercise 14.2

1. The successor function may also be defined as Succ′
df
= λn f x[(f (n f x))]. Show that the following

hold when Succ is replaced by Succ′

2. Prove the following.

(a) (Succ 0) =βη 1

(b) (Succ n) =βη n + 1

(c) (IsZero 0) =βη True

(d) (IsZero (Succ n)) =βη False

(e) (Add 0 n) =βη n

(f) (Add m 0) =βη m

(g) (Add m n) =βη p where p denotes the combinator for p = m + n

3. Try to reduce (Add K S) to its β-normal form. Can you interpret the resulting lambda term as

representing some meaningful function?

4. What identities should Mult and Pwr satisfy? Do they do indeed satisfy the inductive definitions of

multiplication and powering of natural numbers respectively. In particular, what is (Pwr 0 0)?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 595 of 778 Quit

Ordered Pairs and Tuples

Pair
df
= λx y p[(p x y)] (14)

Fst
df
= λp[(p True)] (15)

Snd
df
= λp[(p False)] (16)

We may define an n-tuple inductively as a pair consisting of the first element of the n-tuple and an n− 1 tuple

of the other n− 1 elements. Let ⟨L,M⟩ represent a pair. We then have for any n > 2

⟨L1, . . . , Ln⟩ = (Pair L1 ⟨L2, . . . , Ln⟩)

Recursively defined data structures – Lists

Note the isomorphism between lists of length n and n-tuples for each n ≥ 2 (ordered pairs are 2-tuples). We

use this facility to define lists of length n ≥ 0 by first defining the empty list as being the same as False.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 596 of 778 Quit

Nil
df
= λx y[y] (17)

List
df
= λh t[Pair h t] (18)

Hd
df
= λl[(l True)] (19)

Tl
df
= λl[(l False)] (20)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 597 of 778 Quit

Exercise 14.3

1. Let P
df
= (Pair L M). Verify that (Pair (Fst P ) (Snd P )) =βη P .

2. Let Sfst
df
= (Fst S) and Ssnd

df
= (Snd S).

(a) Compute the βη normal form of (Pair Sfst Ssnd)? Is it βη-equal to S?

(b) Now compute the βη normal forms of (Fst (Pair Sfst Ssnd)) and (Snd (Pair Sfst Ssnd)). What are

their βη normal forms?

(c) What can you conclude from the above?

3. For any k, 0 ≤ k < n, define combinators which extract the k-th component of an n-tuple.

4.(a) Define a combinator Bintree that constructs binary trees from λ-terms with node labels drawn from

the Church numerals.

(b) Define combinators Root, Lst and Rst which yield respectively the root, the left subtree and the

right subtree of a binary tree.

(c) Prove that for any such binary tree B expressed as a λ-term, (Bintree (Root B) (Lst B) (Rst B)) =βη

B.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 598 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 599 of 778 Quit

15. Confluence Definitions

Confluence: Definitions



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 600 of 778 Quit

Reduction Relations

Definition 15.1 For any binary relation ρ on Λ

1. ρ1 is the compatible closure of ρ

2. ρ+ is the transitive closure of ρ1

3. ρ∗ is the reflexive-transitive-closure of ρ1 and is a preorder

4. ((ρ1) ∪ (ρ1)−1)∗ (denoted =ρ) is the reflexive-symmetric-transitive closure
of ρ1 and is an equivalence relation.

5.=ρ is also called the equivalence generated by ρ.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 601 of 778 Quit

Reduction Relations: Arrow Notation

We will often use −→ (suitably decorated) in infix notation as a reduction
relation instead of ρ. Then

•−→1 denotes the compatible closure of −→,

•−→+ denotes the transitive closure of −→,

•−→∗ denotes the reflexive-transitive closure of −→, and

• ∗←→ denotes the equivalence generated by −→,



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 602 of 778 Quit

The Diamond Property

Definition 15.2 Let ρ be any relation on terms. ρ has the diamond prop-
erty if for all L, M , N ,

M
ρ

L
ρ
N

⇒ ∃P :

M
ρ
P

ρ
N



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 603 of 778 Quit

The Diamond Property: Arrow Notation

We often use a decorated version of the symbol −→ for a reduction relation
and depict the diamond property as

M

−→
−→

L ⇒ ∃ P−→ −→
N



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 604 of 778 Quit

Reduction Relations: Termination

Let −→ be a reduction relation, −→∗ the least preorder containing −→ and
∗←→ the least equivalence relation containing −→∗. Then

Definition 15.3−→ is terminating iff there is no infinite sequence of the
form

L0 −→ L1 −→ · · ·
Lemma 15.4−→η is a terminating reduction relation.

Proof: By induction on the structure of terms. QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 605 of 778 Quit

15.1. Why confluence?

We are mostly interested in β-reduction which is not guaranteed to terminate. We already know that there are several
terms which are only weakly normalising (β-WN). This means that there are several possible reduction sequences, some of
which may yield β-normal forms while the others may yield infinite computations. Hence in order to obtain normal forms
for such terms we need to schedule the β-reductions carefully to be guaranteed a normal form. The matter would be further
complicated if there are multiple unrelated normal forms.

Each β-reduction step may reveal fresh β-redexes. This in turn raises the disquieting possibility that each termination
sequence may yield a different β-normal form. If such is indeed the case, then it raises fundamental questions on the use of
β-reduction (or function application) as a notion of reduction. If β-reduction is to be considered fundamental to the notion
of computation then all β-reduction sequences that terminate in β-nfs must yield the same β-nf upto α-equivalence.

Hence our interest in the notion of confluence. Since the issue of confluence of β-reduction is rather complicated we approach
it in terms of inductively easier notions such as local confluence, and semi-confluence which finally lead up to confluence and
the Church-Rosser property.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 606 of 778 Quit

Reduction: Local Confluence

Definition 15.5−→ is locally confluent if for all L, M , N ,

N ←− L −→M ⇒ ∃P : N −→∗ P ∗←−M

which we denote by
M

−→
−→ ∗

L ⇒ ∃ P
−→

−→
∗

N



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 607 of 778 Quit

Reduction: Semi-confluence

Definition 15.6−→ is semi-confluent if for all L, M , N ,

N ←− L −→∗ M ⇒ ∃P : N −→∗ P ∗←−M

which we denote by
M

−→
−→ ∗

L ⇒ ∃ P
−→ ∗ −→

∗

N



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 608 of 778 Quit

Reduction: Confluence

Definition 15.7−→ is confluent if for all L, M , N ,

N ∗←− L −→∗ M ⇒ ∃P : N −→∗ P ∗←−M

which we denote as
M

−→
∗ −→ ∗

L ⇒ ∃ P
−→ ∗ −→

∗

N

Fact 15.8 Any confluent relation is also semi-confluent.

■



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 609 of 778 Quit

Equivalence Characterization

Lemma 15.9

1.
∗←→ is the least equivalence containing −→.

2.
∗←→ is the least equivalence containing −→∗.

3. L
∗←→ M if and only if there exists a finite sequence L ≡

M0,M1, . . .Mm ≡ M , m ≥ 0 such that for each i, 0 ≤ i < m,
Mi −→Mi+1 or Mi+1 −→Mi. We represent this fact more succinctly as

L ≡α M0 −→ /←−M1 −→ /←− · · · −→ /←−Mm ≡α M (21)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 610 of 778 Quit

Proof of lemma 15.9

Proof:

1. Just prove that
∗←→ is a subset of every equivalence that contains −→.

2. Use induction on the length of proofs to prove this part

3. For the last part it is easy to see that the existence of the “chain equation” (21) implies L
∗←→ M by transitivity. For the other part use

induction on the length of the proof.

QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 611 of 778 Quit

Reduction: The Church-Rosser Property (CRP)

Definition 15.10−→ is Church-Rosser if for all L, M ,

L
∗←→M ⇒ ∃P : L −→∗ P ∗←−M

which we denote by

L
∗←→ M

−→ ∗ ⇓
−→

∗
∃P

To answer the main question we need to prove that β-reduction is Church-
Rosser.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 612 of 778 Quit

β-reduction and CRP

We already know that

• some terms may only be weakly normalising
• weakly normalising terms have both terminating and non-terminating com-
putations.

• But if the CRP holds then all terminating computations will yield the same
β-nf (upto ≡α).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 613 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 614 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 615 of 778 Quit

15.2. Confluence: Church-Rosser

The Church-Rosser Property



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 616 of 778 Quit

Confluence and Church-Rosser

Lemma 15.11 Every confluent relation is also semi-confluent

■

Theorem 15.12 The following statements are equivalent for any reduction
relation −→.

1.−→ is Church-Rosser.

2.−→ is confluent.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 617 of 778 Quit

Proof of theorem 15.12

Proof: (1⇒ 2) Assume −→ is Church-Rosser and let
N ∗←− L −→∗ M

Clearly then N
∗←→M . If −→ is Church-Rosser then

∃P : N −→∗ P ∗←−M

which implies that it is confluent.

(2⇒ 1) Assume −→ is confluent and let L
∗←→M . We proceed by induction on the length of the chain (21).

L ≡α M0 −→ /←−M1 −→ /←− · · · −→ /←−Mm ≡α M

Basis. m = 0. This case is trivial since for any P , L −→∗ P iff M −→∗ P

Induction Hypothesis (IH).

The claim is true for all chains of length k, 0 ≤ k < m.

Induction Step. Assume the chain is of length m = k + 1. i.e.

L ≡α M0 −→ /←−M1 −→ /←− · · · −→ /←−Mk −→ /←−Mk+1 ≡α M



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 618 of 778 Quit

Case Mk −→M . Then by the induction hypothesis and semi-confluence we have

L
∗←→ Mk−→ ∗ ⇓

−→
∗

−→
∃Q M

−→ ∗ ⇓
−→

∗

∃P
which proves the claim.

Case Mk ←−M . Then the claim follows from the induction hypothesis and the following diagram

L
∗←→ Mk ←−M

−→ ∗ ⇓
−→

∗

∃P

QED

Lemma 15.13 If a terminating relation is locally confluent then it is semi-confluent.

Proof: Assume L −→M and L −→∗ N . We need to show that there exists P such that M −→∗ P and N −→∗ P . We prove this by induction on
the length of L −→∗ N . If L ≡α N then P ≡α M , otherwise assume L −→ N1 −→ · · · −→ Nn = N for some n > 0. By the local confluence we
have there exists P1 such that M −→∗ P1. By successively applying the induction hypothesis we get terms P2, . . . , Pn such that Pj−1 −→∗ Pj and
Nj −→∗ Pj for each j, 1 ≤ j ≤ m. In effect we complete the following rectangle

L −→ N1 −→ N2 −→ · · · −→ Nn ≡M
↓ ↓ ↓ · · · ↓
M −→ P1 −→ P2 −→ · · · −→ Pn



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 619 of 778 Quit

QED

From lemma 15.13 and theorem 15.12 we have the following theorem.

Theorem 15.14 If a terminating relation is locally confluent then it is confluent.

Proof:

−→ on Λ is given to be terminating and locally confluent. We need to show that it is confluent. That is for any L, we are given that

1. there is no infinite sequence of reductions of L, i.e. every maximal sequence of reductions of L is of length n for some n ≥ 0.

2.
N1

1←− L −→1 M1 ⇒ ∃P :M1 −→∗ P ∗←− N1 (22)

We need to show for any term L that
N ∗←− L −→∗ M ⇒ ∃S :M −→∗ S ∗←− N (23)

Let L be any term. Consider the graph G(L) = ⟨Γ(L),−→1⟩ such that Γ(L) = {M | L −→∗ M}. Since −→ is a terminating reduction

Fact 15.15 The graph G(L) is acyclic for any term L.

If G(L) is not acyclic, there must be a cycle of length k > 0 such that M0 −→1 M1 −→1 · · · −→1 Mk−1 −→1 M0 which implies there is also an
infinite reduction sequence of the form L −→∗ M0 −→k M0 −→k · · · which is impossible.

Since there are only a finite number of sub-terms of L that may be reduced under −→, for each L there is a maximum number p ≥ 0, which is the
length of the longest reduction sequence.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 620 of 778 Quit

Fact 15.16 For every M ∈ Γ(L),

1. G(M) is a sub-graph of G(L) and

2. For every M ∈ Γ(L)− {L}, the length of the longest reduction sequence of M is less than p.

Proof: We proceed by induction on p.

Basis. p = 0. Then Γ(L) = {L} and there are no reductions possible, so it is trivially confluent.

Induction Hypothesis (IH).

For any L whose longest reduction sequence is of length k, 0 ≤ k < p, property (23) holds.

Induction Step. Assume L is a term whose longest reduction sequence is of length p > 0. Also assume N ∗←− L −→∗ M i.e. ∃m,n ≥ 0 : N n←−
L −→m M .

Case m = 0. If m = 0 then M ≡α L and hence S ≡α N .

Case n = 0. Then N ≡α L and we have S ≡α M .

Case m,n > 0. Then consider M1 and N1 such that

N ∗←− N1
1←− L −→1 M1 −→∗ M (24)

See figure (7). By (22), ∃P : M1 −→∗ P ∗←− N1. Clearly M1, N1, P ∈ Γ(L) − {L}. Hence by fact 15.16, G(M1), G(N1) and G(P ) are all
sub-graphs of G(L) and all their reduction sequences are of length smaller than p. Hence by induction hypothesis, we get

P ∗←−M1 −→∗ M ⇒ ∃Q :M −→∗ Q ∗←− P (25)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 621 of 778 Quit

and
N ∗←− N1 −→∗ P ⇒ ∃R : P −→∗ R ∗←− N (26)

But by (25) and (26) and the induction hypothesis we have

R ∗←− P −→∗ Q⇒ ∃S : Q −→∗ S ∗←− R (27)

Combining (27) with (24), (25) and (26) we get

N ∗←− L −→∗ M ⇒ ∃S :M −→∗ S ∗←− N (28)

QED

QED

Theorem 15.17 If a terminating relation is locally confluent then it is Church-Rosser.

Proof: Follows from theorem 15.14 and theorem 15.12 QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 622 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 623 of 778 Quit

15.3. The Church-Rosser Property

The Church-Rosser Property for β-reduction



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 624 of 778 Quit

Parallel Beta Reduction

Definition 15.18 The parallel-β or ||β reduction is the smallest relation for
which the following rules hold.

||β1 L −→1
||β L

||β1App
L −→1

||β L
′,M −→1

||β M
′

(L M) −→1
||β (L′ M ′)

||β1Abs1
L −→1

||β L
′

λx[L] −→1
||β λx[L

′]
||β1Abs2

L −→1
||β L

′,M −→1
||β M

′

(λx[L] M) −→1
||β {M

′/x}L′



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 625 of 778 Quit

Parallel Beta: The Diamond Property

Lemma 15.19

1. L −→1
β L
′⇒ L −→1

||β L
′.

2. L −→1
||β L

′⇒ L −→∗β L′.
3.−→∗||β = −→∗β and is the smallest preorder containing −→1

||β.

4. If L −→1
β L
′ and M −→1

||β M
′ then {M/x}L −→1

||β {M
′/x}L′.

Proof: By induction on the structure of terms or by induction on the number of steps in any proof. QED

Theorem 15.20−→1
||β has the diamond property.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 626 of 778 Quit

Proof of theorem 15.20

Proof: We need to prove for all L
N 1

||β←− L −→1
||β M ⇒ ∃P : N −→1

||β P
1
||β←−M

We prove this by induction on the structure of L and a case analysis of the rule applied in definition 15.18.

Case L ≡ x ∈ V . Then L ≡M ≡ N ≡ P .

Before dealing with the other inductive cases we dispose of some trivial sub-cases that arise in some or all of them.

Case L ≡α M . Choose P ≡α N to complete the diamond.

Case L ≡α N . Then choose P ≡α M .

Case M ≡α N . Then there is nothing to prove.

In the sequel we assume N ̸≡α L ̸≡α M ̸≡α N and proceed by induction on the structure of L.

Case L ≡ λx[L1]. Then clearly M and N were both obtained in proofs whose last step was an application of rule ||β1Abs1 and so M ≡ λx[M1] and

N ≡ λx[N1] for some M1 and N1 respectively and hence N1
1
||β←− L1 −→1

||β M1. By the induction hypothesis we have

∃P1 : N1 −→1
||β P1

1
||β←−M1

Hence by choosing P ≡ λx[P1] we obtain the required result.

Case L ≡ (L1 L2) and L1 is not an abstraction.

The rule ||β1App is the only rule that must have been applicable in the last step of the proofs of N 1
||β←− L −→1

||β M . Clearly then there exist M1,

M2, N1, N2 such that N1
1
||β←− L1 −→1

||β M1 and N2
1
||β←− L2 −→1

||β M2. Again by the induction hypothesis, we have

∃P1 : N1 −→1
||β P1

1
||β←−M1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 627 of 778 Quit

and
∃P2 : N2 −→1

||β P2
1
||β←−M2

By choosing P ≡ (P1 P2) we obtain the desired result.

Case L ≡ (λx[L1] L2).

Here we have four sub-cases depending upon whether each ofM and N were obtained by an application of ||β1App or ||β1Abs2. Of these the sub-case
when both M and N were obtained by applying ||β1App is easy and similar to the previous case. That leaves us with three subscases.

Sub-case: Both M and N were obtained by applying rule ||β1Abs2.
Then we have

{N2/x}N1 ≡ N 1
||β←− L ≡ (λx[L1] L2) −→1

||β M ≡ {M2/x}M1

for some M1, M2, N1, N2 such that
N1

1
||β←− L1 −→1

||β M1

and
N2

1
||β←− L2 −→1

||β M2

By the induction hypothesis
∃P1 : N1 −→1

||β P1
1
||β←−M1

and
∃P2 : N2 −→1

||β P2
1
||β←−M2

and the last part of lemma 15.19 we have
∃P ≡ {P2/x}P1 : N −→1

||β P
1
||β←−M

completing the proof.
Sub-case: M was obtained by applying rule ||β1Abs2 and N by ||β1App.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 628 of 778 Quit

Then we have the form
(λx[N1] N2) ≡ N 1

||β←− L ≡ (λx[L1] L2) −→1
||β M ≡ {M2/x}M1

where again
N1

1
||β←− L1 −→1

||β M1

and
N2

1
||β←− L2 −→1

||β M2

By the induction hypothesis
∃P1 : N1 −→1

||β P1
1
||β←−M1

and
∃P2 : N2 −→1

||β P2
1
||β←−M2

and finally we have
∃P ≡ {P2/x}P1 : N −→1

||β P
1
||β←−M

completing the proof.
Sub-case: M was obtained by applying rule ||β1App and N by ||β1Abs2.
Similar to the previous sub-case.

QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 629 of 778 Quit

Beta and Parallel Beta: Confluence

To show that −→1
β is Church-Rosser, it suffices to prove that it is confluent.

Theorem 15.21−→1
||β is confluent.

■

Corollary 15.22−→1
β is confluent.

Proof: Since −→∗β = −→∗||β by lemma 15.19 it follows from theorem 15.21 that −→1
β is confluent. QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 630 of 778 Quit

Proof of theorem 15.21.

Proof: We need to show that for all L, M , N ,

N ∗
||β←− L −→∗

||β M ⇒ ∃P : N −→∗
||β P

∗
||β←−M

We prove this by induction on the length of the sequences

L −→1
||β M1 −→1

||β M2 −→1
||β · · · −→1

||β Mm ≡M

and
L −→1

||β N1 −→1
||β N2 −→1

||β · · · −→1
||β Nn ≡ N

where m,n ≥ 0. More specifically we prove this by induction on the pairs of integers (j, i) bounded by (n,m), where (j, i) < (j′, i′) if and only if
either j < j′ or (j = j′) and i < i′. The interesting cases are those where both m,n > 0. So we repeatedly apply theorem 15.20 to complete the
rectangle

L −→1
||β M1 −→1

||β M2 −→1
||β · · · −→1

||β Mm ≡M

||β↓1 ||β↓1 ||β↓1 · · · ||β↓1
N1 −→1

||β P11 −→1
||β P12 −→1

||β · · · −→1
||β P1m

||β↓1 ||β↓1 ||β↓1 · · · ||β↓1
...

...
... · · ·

...

||β↓1 ||β↓1 ||β↓1 · · · ||β↓1
Nn −→1

||β Pn1 −→1
||β Pn2 −→1

||β · · · −→1
||β Pnm ≡ P

QED ■



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 631 of 778 Quit

The Church-Rosser Property and β-nf

Corollary 15.23−→1
β is Church-Rosser.

Proof: Follows from corollary 15.22 and theorem 15.12. QED

Corollary 15.24 If a term reduces to a β-normal form then the normal form
is unique (upto ≡α).
Proof: If N1

∗
β←− L −→∗β N2 and both N1 N2 are β-nfs, then by the corollary 15.22 they must both be

β-reducible to a third element N3 which is impossible if both N1 and N2 are β-nfs. Hence β-nfs are unique (upto

≡α) whenever they exist. QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 632 of 778 Quit

Finding β-nf

The following shows that if a normal form exists, then there is a β-reduction
sequence which will find it.

Corollary 15.25 If L =β N ∈ β-nf then L→∗β N .

Proof: By the Church-Rosser property both L and N reduce to a common form M . But since N is in

normal form M ≡α N . QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 633 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 634 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 635 of 778 Quit

16. An Applied Lambda-Calculus

16.1. FL with recursion

An Applied Lambda-Calculus With Types



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 636 of 778 Quit

16.2. Motivation and Organization

In the sequel we will define, by stages a simple higher order programming language.

Stage 0. A simple expression language to represent integers and booleans. Initially we define a representation for integers
and booleans purely symbolically (29) as a data type with constant constructors.

Stage 1. FL(X) – a simple expression (functional programming) language with variables that allows expressions to be
defined on the two types of data – integers and booleans.

Static Semantics. By allowing more than one type of data we also show that there is a need for a type-checking
discipline since several meaningless constructs may be generated by the grammar. We specify the type-checking
(type-inferencing) system for this simple language as the static semantics of the language.

Functional Semantics. For the well-typed terms we also define the intended meanings of these expressions, by defining
a functional semantics.

Operational (Reduction) Semantics. We show that we can capture the intended meanings of well-typed expressions
by a dynamic semantics which specifies symbolically a notion of reduction (δ-rules (51) to (60)).

Relating Functional and Operational Semantics. The integer values and boolean values are denoted symbolically
by δ-normal forms. Lemma 16.3 shows that the intended values of integers and boolean values are obtained as



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 637 of 778 Quit

δ-normal forms and in combination with the property of confluence (see exercise 16.1 problem 3) it follows that all
integer and boolean values have unique normal form representations in the expression language.

Subject Reduction. In problem 16.1.5 we encourage the reader to show that types are preserved under δ-reductions
(5) i.e. the type of an expression cannot change arbitrarily during reduction (program execution) – an important
static property that a dynamic semantics should obey.

Referential Transparency. Further, in problem (6) the reader is encouraged to show that the language enjoys the
property of referential transparency viz. that each variable name in an expression may be substituted by its value
while preserving the meaning of the expression – a dynamic property that any functional programming language
should obey.

Stage 2. Λ+FL(X). However, the language FL(X) lacks the elementary facilities for user-defined functions. Add to that
the lack of expressiveness to define even the most common useful integer operations such as addition, subtraction and
multiplication. We rectify this by defining λ-abstraction and application to terms of the language. The new extended
language Λ+FL(X) allows us to define some (non-recursive) operators and functions over the terms of the language
FL(X). BY this addition, β-reduction has been added to the language as well. The language Λ+FL(X) is expressive
enough to define some of the common boolean operators and the most common order relations on integers. These have
been made possible due to the inclusion of the ternary if-the-else construct(or) ITE and construct(or)s for checking for
0 (IZ) and positive integer values (GTZ).

Stage 3. The addition of the λ-abstraction and application on top of FL(X) has the drawback that functions and function
applications do not have the same status as expressions. To bring function definition and application down to the
expression level it is necessary to allow an intermingling of the two. Hence we “flatten” the language to produce a



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 638 of 778 Quit

genuinely applied λ-calculus with a βδ reduction mechanism. The result is the language ΛFL(X).

Stage 4. ΛFL(X) allows the full power of the λ-calculus to be incorporated into the language. Hence it allows higher-
order functions as well. However, the power of recursion is not achieved in a type-safe manner because no paradoxical
combinator can be made type-safe. Hence even to program some elementary inductive functions like addition, a recursion
operator is absolutely required. This yields the language ΛRecFL(X).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 639 of 778 Quit

A Simple Language of Terms: FL0

Let X be an infinite collection of variables (names). Consider the language
(actually a collection of abstract syntax trees) of terms TΩ(X) defined by the
following constructors (along with their intended meanings). TΩ denotes the
variable-free subset of TΩ(X) and is called the set of ground terms.

Construct Arity Informal Meaning
Z 0 The number 0
T 0 The truth value true
F 0 The truth value false
P 1 The predecessor function on numbers
S 1 The successor function on numbers

ITE 3 The if-then-else construct (on numbers and truth values)
IZ 1 The is-zero predicate on numbers
GTZ 1 The greater-than-zero predicate on numbers



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 640 of 778 Quit

FL(X): Language, Datatype or Instruction Set?

The set of terms TΩ(X), where X is an infinite collection of variable names
(that are disjoint from all other symbols in the language) may be defined by
the BNF:

t ::= x ∈ X Z (P t) (S t) T F (ITE ⟨t, t1, t0⟩) (IZ t) (GTZ t)
(29)

• It could be thought of as a user-defined data-type

• It could be thought of as the instruction-set of a particularly simple hardware
machine.

• It could be thought of as a simple functional programming language without
recursion.

• It is a language with two simple types of data: integers and booleans

• Notice that the constructor (ITE ⟨t, t1, t0⟩) is overloaded.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 641 of 778 Quit

Extending the language

To make this simple language safe we require

Type-checking : to ensure that arbitrary expressions are not mixed in ways
they are not “intended” to be used. For example

• t cannot be a boolean expression in (S t), (P t), (IZ t) and (GTZ t)

• (ITE ⟨t, t1, t0⟩) may be used as a conditional expression for both integers
and booleans, but t needs to be a boolean and either both t1 and t0 are
integer expressions or both are boolean expressions.

Functions : To be a useful programming language we need to be able to
define functions.

Recursion : to be able to define complex functions in a well-typed fashion.
Recursion should also be well-typed



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 642 of 778 Quit

Typing FL0 Expressions

We have only two types of objects in FL0 – integers and booleans which we
represent by int and bool respectively. We then have the following elemen-
tary typing annotations for the expressions, which may be obtained by pattern
matching.

Basis. Z : int, T : bool, F : bool

Int. S : int→ int, P : int→ int

Bool. IZ : int→ bool, GTZ : int→ bool

boolCond. ITEB : bool ∗ bool ∗ bool→ bool

intCond. ITEI : bool ∗ int ∗ int→ int



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 643 of 778 Quit

16.3. Static Semantics of FL(X)

While dynamic semantics refers to the run-time behaviour of a program, the static semantics refers to all the context-
sensitive information about a program that needs to be gathered during the compilation process, to enable the generation of
code both for execution as well as error-reporting and handling. Most of this information about variable symbols is stored in
the symbol table and is accessed during the code-generation process for both memory allocation and the actual generation
of target code.

The purposes of both code-generation and memory allocation aspects are more or less (i.e. except for scope and the absolute
addresses of the data-objects during execution) covered by determining the types of the various objects in a program (data
objects, functions, procedures etc.). The type of a scalar data item implicitly defines the amount of storage it requires. For
example, an integer variable needs perhaps one word of storage and a floating point variable requires two-words of storage,
booleans require just a bit (but in the case of byte-addressable or word-addressable machines machines it may be more
efficient to assign a byte or word of storage to it). Similarly characters may require a byte of storage and strings require
storage that is proportional to their length. All complex data items such as records and arrays being built of the scalar
components require correspondingly proportional amounts of storage in the run-time stack. For each of these the compiler
creates a so-called data descriptor and stores it in the symbol table and refers to it while generating code. The control
units viz. expressions, commands, functions and procedures would require storage (in the code-segment) proportional to
the length of the code that is generated for each of them; and the parameters they invoke correspondingly require data



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 644 of 778 Quit

descriptors to define the storage requirements for the parameters. Further in the process of compiling a procedure or a
function the types of input and output parameters in the definition (declaration) should correspond exactly with the types
of the actual parameters in each call (otherwise a compile-time error needs to be generated).

Much of the above process can all be captured by the simple process of assigning types to each data and control unit in a
program. Hence most compilers (with static scoping rules) actually perform static or compile-time type-checking.

16.3.1. Type-checking FL(X) terms

While trying to type FL0 expressions we have had to introduce two new type operators viz. ∗ and → which allow us to
precisely capture the types of expressions involving constructors such as S, P, IZ, GTZ, ITE etc. which we intend to view as
functions of appropriate arity on appropriate types of arguments. These type operators will be required for specifying the
types of other (user-defined) functions as well. Hence it makes sense for us to define a formal language of type expressions
(with type variables!) to enable us define types of polymorphic operations (which in the particular case of FL(X) is restricted
to overloading the ITE constructor). As we shall see later, this expression language of types may be defined by the grammar

σ, τ ::= int bool ′a ∈ TV (σ∗τ) (σ→τ)
where ′a ∈ TV is a type variable and all type variables are distinct from program variables in X.

What we have specified earlier are the typing axioms for the constant expressions (without variables). For the purpose of
typing expressions involving (free) variables we require assumptions to be made about the types of the variables occurring
in an expression. In most programming languages these assumptions come from the declarations of variables. For instance,



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 645 of 778 Quit

the successor constructor S should be applied only to expressions which yield integer values. Hence for any expression
t ∈ FL(X), (S t) would be well-typed only if t : int and further (S t) : int. Similarly, given three expressions t, t1, t0, the
expression (ITE ⟨t, t1, t0⟩) type-checks i.e. it is well-typed only if t : bool and the types of t1 and t0 are the same – either
both bool or both int.

16.3.2. The Typing Rules

In a language of expressions that requires the type of each variable to be declared beforehand, the list of (free) variables
and their types may be available as a type environment Γ and the rules that we give are type-checking rules. The rules for
type-checking any expression t ∈ TΩ(X) extend the earlier specification by induction on the structure of expressions. More
precisely, the earlier specification form the basis of an induction by structure of expressions. The 0-ary constructors and
variables form the basis for the structural induction rules and have the following axioms and their types are independent
of the type environment. The type-checking rules for expressions form the induction step of the type-checking algorithm
and go as follows. These rules also assign types to each individual sub-expression along the way. We begin with the unary
constructors and conclude with the conditional operator.

Alternatively, in the absence of declarations, we could derive them as constraints on the types of variables (as we shall see
later). It is then necessary to also use the concept of type variables as distinct from program variables.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 646 of 778 Quit

Static Semantics of FL(X): Type-checking

Ft
Γ ⊢ F : bool

Tt
Γ ⊢ T : bool

Zt
Γ ⊢ Z : int

Var
Γ ⊢ x : Γ(x)

St
Γ ⊢ t : int

Γ ⊢ (S t) : int
Pt

Γ ⊢ t : int
Γ ⊢ (P t) : int

IZt
Γ ⊢ t : int

Γ ⊢ (IZ t) : bool
GTZt

Γ ⊢ t : int
Γ ⊢ (GTZ t) : bool

ITEIt

Γ ⊢ t : bool
Γ ⊢ t1 : int
Γ ⊢ t0 : int

Γ ⊢ (ITE ⟨t, t1, t0⟩) : int
ITEBt

Γ ⊢ t : bool
Γ ⊢ t1 : bool
Γ ⊢ t0 : bool

Γ ⊢ (ITE ⟨t, t1, t0⟩) : bool



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 647 of 778 Quit

Well-typed Terms

Definition 16.1 A term t ∈ TΩ(X) in a type environment Γ is well-typed if
there exists a proof of either Γ ⊢ t : int or Γ ⊢ t : bool (not both).

As we have seen before there are terms that are not well-typed. We consider
only the subset WTΩ(X) ⊂ TΩ(X) while describing the dynamic semantics.
While TΩ is variable-free subset of TΩ(X), WTΩ ⊂ WTΩ(X) is the variable-
free subset of WTΩ(X).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 648 of 778 Quit

Dynamic Semantics of FL(X)

The dynamic semantics or the run-time behaviour of FL(X) expressions may
be specified in several ways.

Functional semantics. The language designer could specify the intended
meanings of the constants, constructors and operators in terms that are
useful to the user programmer as functions (as an extension of the informal
meaning specified earlier), or

Operational semantics The implementor of the language could specify the
run-time behaviour of expressions through an abstract algorithm.

But any implementation should also be consistent with the intended meanings
specified by the designer



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 649 of 778 Quit

Functional Semantics of FL(X):0

Boolean constants . The constructors T and F are interpreted as the
boolean constants true and false respectively.

Zero . Z is interpreted as the constant number 0

Positive integers . Each k-fold application, k > 0, of the constructor S to Z
viz. (S . . . (S Z) . . .)︸ ︷︷ ︸

k−fold
(abbreviated to (Sk Z) for convenience) is interpreted

as the positive integer k.

Negative integers . Similarly, each k-fold application, k > 0, of the con-
structor P to Z viz. (P . . . (P Z) . . .)︸ ︷︷ ︸

k−fold
(abbreviated as (Pk Z)) is interpreted

as −k.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 650 of 778 Quit

Functional Semantics of FL(X):1

• Let Z and B denote the sets of integers and booleans respectively.

• Each well-typed expression in TΩ(X) denotes either an integer or boolean
value depending upon its type.

• Let V = {v | v : X → (Z∪B)} denote the set of all valuation environments
which associate with each variable a value of the appropriate type (either
integer or boolean).

•With the interpretation of the symbols in the language given earlier we
associate a meaning function

M : WTΩ(X)→ (V → (Z ∪ B))
such that for each well-typed expression t ∈ WTΩ(X), M [t] is a function
that extends each v ∈ V , inductively on the structure of expressions to a
value of the appropriate type.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 651 of 778 Quit

Functional Semantics of FL(X):2

M [x] v
df
= v(x) (30)

M [T] v
df
= true (31)

M [F] v
df
= false (32)

M [Z] v
df
= 0 (33)

M [(P t)] v
df
= M [t] v − 1 (34)

M [(S t)] v
df
= M [t] v + 1 (35)

M [(IZ t)] v
df
= M [t] v = 0 (36)

M [(GTZ t)] v
df
= M [t] v > 0 (37)

M [(ITE ⟨t, t1, t0⟩)] v
df
=

{
M [t1] v if M [t] v
M [t0] v if not M [t] v

(38)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 652 of 778 Quit

16.4. Equational Reasoning in FL(X)

From the semantics of FL(X) the following identitities are easily derived. We leave the proofs of these identities to the
reader. It is also important that some of these identities are used (oriented from left to right) in the definition of the δ-rules
as rules of reduction (or “simplification”) in order to obtain normal forms. In such cases the equality is made asymmetric
(left to right).

Identities used for simplification

(P (S x)) = x (39)

(S (P x)) = x (40)

(ITE ⟨T, x, y⟩) = x (41)

(ITE ⟨F, x, y⟩) = y (42)

(IZ Z) = T (43)

(GTZ Z) = F (44)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 653 of 778 Quit

Identities involving normal forms

(IZ (S n)) = F, where (S n) is a δ-nf (45)

(IZ (P n)) = F, where (P n) is a δ-nf (46)

(GTZ (S n)) = T, where (S n) is a δ-nf (47)

(GTZ (P n)) = F, where (P n) is a δ-nf (48)

Besides the above identities which are actually used in an oriented form for the purpose of computation we may also prove
other identities from the functional semantics. Many of these look like they could be included in the rules for computation,
but we may not be because of

• the limits of computability in general and

• their inclusion might at times lead to non-determinism and

• in more extreme cases lead to non-termination even though there are deterministic ways to obtain δ-normal forms.

However they are useful for reasoning about programs written in the language. For example the following obvious identity

(ITE ⟨b, x, x⟩) = x, where b is a boolean (49)

(50)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 654 of 778 Quit

is useful for simplifying a program for human reasoning. However, when included as a δ-rule, it greatly complicates the
computation when equality of the two arms of the conditional need to be checked (when they are not merely variables
but complicated expressions themselves). There is a further complication of defining under what conditions this equality
checking needs to be performed.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 655 of 778 Quit

Reduction Semantics

Just as the dynamic behaviour of a λ-term may be described by β-reduction, we
may describe the dynamic behaviour of a FL(X) expression through a notion of
reduction called δ−reduction. It is important that such a notion of reduction
produces results (values) that are consistent with the functional semantics.

Example 16.2 The simplifications used to obtain the answer 197 from the
expression 142 + 1 is an example of the δ-rules used in an applied λ-calculus
on the naturals.

We first begin with the δ-normal forms for integers and booleans.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 656 of 778 Quit

The Normal forms for Integers

Zero . Z is the unique representation of the number 0 and every integer
expression that is equal to 0 must be reducible to Z.

Positive integers . Each positive integer k is uniquely represented by the
expression (Sk Z) where the super-script k denotes a k-fold application of
S.

Negative integers . Each negative integer −k is uniquely represented by
the expression (Pk Z) where the super-script k denotes a k-fold application
of P.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 657 of 778 Quit

δ rules for Integers

See also section 16.4

(P (S x)) −→δ x (51)

(S (P x)) −→δ x (52)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 658 of 778 Quit

δ Normal Forms

Lemma 16.3 The following well-typed (in any type environment Γ) terms are
exactly the δ-normal forms in WTΩ along with their respective meanings in
the functional semantics (in any dynamic environment v ∈ V).
1. Γ ⊢ Z : int and M [Z] v = 0

2. Γ ⊢ T : bool and M [T] v = true

3. Γ ⊢ F : bool and M [F] v = false

4. For each positive integer k, Γ ⊢ (Sk Z) : int and M [(Sk Z)] v = k

5. For each positive integer k, Γ ⊢ (Pk Z) : int and M [(Pk Z)] v = −k



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 659 of 778 Quit

δ Rules for Conditional

See also section 16.4

Pure Boolean Reductions . The constructs T and F are the normal forms
for boolean values.

(ITE ⟨T, x, y⟩) −→δ x (53)

(ITE ⟨F, x, y⟩) −→δ y (54)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 660 of 778 Quit

δ Rules: Zero Test

See also section 16.4

Testing for zero .

(IZ Z) −→δ T (55)

(IZ (S n)) −→δ F, where (S n) is a δ-nf (56)

(IZ (P n)) −→δ F, where (P n) is a δ-nf (57)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 661 of 778 Quit

δ Rules: Positivity

See also section 16.4

(GTZ Z) −→δ F (58)

(GTZ (S n)) −→δ T, where (S n) is a δ-nf (59)

(GTZ (P n)) −→δ F, where (P n) is a δ-nf (60)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 662 of 778 Quit

Exercise 16.1

1. Find examples of expressions in FL0 which have more than one computation.

2. Prove that −→δ is terminating.

3. Prove that −→δ is Church-Rosser.

4. The language FL(X) extends FL0 with variables. What are the new δ-normal forms in FL(X)?

5. Subject reduction. Prove that for any well-typed term t ∈ WTΩ(X), and α ∈ {int, bool} if Γ ⊢ t : α and t −→δ t
′

then Γ ⊢ t′ : α.
6. Referential Transparency. Let t ∈ WTΩ(X), FV (t) = {x1, . . . , xn} and let v be a valuation environment. If
{t1, . . . , tn} are ground terms such that for each i, 1 ≤ i ≤ n, M [xi] v = M [ti] v then prove that

(a) M [t] v = M [{t1/x1, . . . , tn/xn}t] v and

(b) {t1/x1, . . . , tn/xn}t −→∗δ u where M [u] v = M [t] v

where {t1/x1, . . . , tn/xn}t denotes the simultaneous syntactic substitution of every occurrence of variable xi by the ground
term ti for 1 ≤ i ≤ n.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 663 of 778 Quit

Λ+FL(X): The Power of Functions

To make the language powerful we require the ability to define functions, both
non-recursive and recursive. We define an applied lambda-calculus of lambda
terms ΛΩ(X) over this set of terms as follows:

L,M,N ::= t ∈ TΩ(X) λx[L] (L M) (61)

This is a two-level grammar combining the term grammar (29) with λ-
abstraction and λ-application.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 664 of 778 Quit

Some Non-recursive Operators

We may “program” the other boolean operations as follows:

NOT
df
= λx[ITE ⟨x, F, T⟩]

AND
df
= λ⟨x, y⟩[ITE ⟨x, y, F⟩]

OR
df
= λ⟨x, y⟩[ITE ⟨x, T, y⟩]

We may also “program” the other integer comparison operations as follows:

GEZ
df
= λx[OR ⟨(IZ x), (GTZ x)⟩]

LTZ
df
= λx[NOT (GEZ x)]

LEZ
df
= λx[OR ⟨(IZ x), (LTZ x)⟩]



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 665 of 778 Quit

Λ+FL(X): Lack of Higher-order Power?

Example 16.4 The grammar (61) does not allow us to define expressions such
as the following:

1. the successor of the result of an application (S (L M)) where (L M)
yields an integer value.

2. higher order conditionals e.g. λx[(ITE ⟨(L x), (M x), (N x)⟩)] where
(L x) yields a boolean value for an argument of the appropriate type.

3. In general, it does not allow the constructors to be applied to λ-expressions.

So we extend the language by allowing a free intermixing of λ-terms and terms
of the sub-language TΩ(X).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 666 of 778 Quit

ΛFL(X): Higher order functions

We need to flatten the grammar of (61) to allow λ-terms also to be used as
arguments of the constructors of the term-grammar (29). The language of
applied λ-terms (viz. ΛΩ(X)) now is defined by the grammar.

L,M,N ::= x ∈ X Z T F

(P L) (S L)

(IZ L) (GTZ L)

(ITE ⟨L,M,N⟩)
λx[L] (L M)

(62)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 667 of 778 Quit

Unfortunately the result of flattening the grammar leads to an even larger number of meaningless expressions (in particular,
we may be able to generate self-referential ones or ones that may not even be interpretable as functions which yield integer
or boolean values.

It is therefore imperative that we define a type-checking mechanism to rule out meaningless expressions. As mentioned
before, type-checking is not context-free and hence cannot be done through mechanisms such as scanning and parsing and
will have to be done separately before any code-generation takes place.

We will in fact, go a step further and design a type-inferencing mechanism that will prevent meaningless expressions from
being allowed.

Further, given a well-typed expression we need to be able to define a meaning for each expression that is somehow compatible
with our intuitive understanding of what λ-expressions involving integer and boolean operations mean. This meaning is
defined through an operational semantics i.e. a system of transitions on how computation actually takes place for each
expression. We define this through a reduction mechanism that is consistent with reduction relations that we have earlier
studied for the untyped λ-calculus.

In order for it to be compatible with the notions of reduction in the λ-calculus we require to define a notion of reduction first
for expressions that do not involve either λ abstraction or λ application. We refer to this notion of reduction as δ-reduction.
Furthermore we need to be able to define δ-normal forms for these expressions. Since the language is completely symbolic,
these normal forms would serve as the final answers obtained in the evaluation of these expressions.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 668 of 778 Quit

Exercise 16.2

1. Prove that the language of (61) is properly contained in the language of (62).

2. Give examples of meaningful terms generated by the grammar (62) which cannot be generated by the grammar (61).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 669 of 778 Quit

Recursion in the Applied Lambda-calculus

The full power of a programming language will not be realised without a recur-
sion mechanism. The untyped lambda-calculus has “paradoxical combinators”
which behave like recursion operators upto =β.

Definition 16.5 A combinator Y is called a fixed-point combinator if
for every lambda term L, Y satisfies the fixed-point property

(Y L) =β (L (Y L)) (63)

Curry’s Y combinator (YC)

YC
df
= λf [(C C)] where C

df
= λx[(f (x x))]

Turing’s Y combinator (YT)

YT
df
= (T T) where T

df
= λy x[(x (y y x ))]



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 670 of 778 Quit

The Paradoxical Combinators

Lemma 16.6 Both YC and YT satisfy the fixed-point property.

□



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 671 of 778 Quit

Proof of lemma 16.6

Proof: For each term L we have
(Yc L)

≡ (λf [(C C)] L)
→1

β ({L/f}C {L/f}C)
≡ (λx[(L (x x))] λx[(L (x x))])
=β (L (Yc L))

Similarly for YT it may be verified that it satisfies the fixed-point property.

(YT L)
≡ ((T T) L)
≡ ((λy[λx[(x ((y y) x))]] T) L)
→2

β (L ((T T) L))
=β (L (YT L))

QED



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 672 of 778 Quit

ΛRecFL(X): Recursion

• But the various Y combinators unfortunately will not satisfy any typing rules
that we may define for the language, because they are all “self-applicative”
in nature.

• Instead it is more convenient to use the fixed-point property and define a new
constructor with a δ-rule which satisfies the fixed-point property (definition
(63)).

• REC is assigned the type ((τ→τ )→τ ) for each type τ .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 673 of 778 Quit

ΛRecFL(X): Adding Recursion

We extend the language ΛFL(X) with a new constructor

L ::= . . . (REC L)

and add the fixed point property as a δ-rule

(REC L) −→δ (L (REC L)) (64)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 674 of 778 Quit

Typing REC

With REC : ((τ→τ )→τ ) and L : τ→τ we have that

(REC L) : τ
(L (REC L)) : τ

which

• type-checks (without recourse to self-reference) as a constructor and

• is consistent with our intuition about recursion as a syntactic unfolding
operator.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 675 of 778 Quit

Recursion Example: Addition

Consider addition on integers as a binary operation to be defined in this lan-
guage. We use the following properties of addition on the integers to define it
by induction on the first argument.

Example 16.7

x + y =

 y if x = 0
(x− 1) + (y + 1) if x > 0
(x + 1) + (y − 1) if x < 0

(65)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 676 of 778 Quit

Using the constructors of ΛRecFL(X) we require that any (curried) definition of addition on numbers should be a solution
to the following equation in ΛRecFL(X) for all (integer) expression values of x and y.

(plusc x y) =βδ ITE ⟨(IZ x), y, ITE ⟨(GTZ x), (plusc (P x) (S y)), (plusc (S x) (P y))⟩⟩ (66)

Equation (66) may be rewritten using abstraction as follows:

plusc =βδ λx[λy[ITE ⟨(IZ x), y, ITE ⟨(GTZ x), (plusc (P x) (S y)), (plusc (S x) (P y))⟩⟩]] (67)

We may think of equation (67) as an equation to be solved in the unknown variable plusc.

Consider the (applied) λ-term obtained from the right-hand-side of equation (67) by simply abstracting the unknown plusc.

addc
df
= λf [λx y[ITE ⟨(IZ x), y, ITE ⟨(GTZ x), (f (P x) (S y)), (f (S x) (P y))⟩⟩]] (68)

Claim 16.8
(REC addc) −→δ (addc (REC addc)) (69)

and hence
(REC addc) =βδ (addc (REC addc)) (70)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 677 of 778 Quit

Claim 16.9 (REC addc) satisfies exactly the equation (67). That is

((REC addc) x y) =βδ ITE ⟨(IZ x), y, ITE ⟨(GTZ x), ((REC addc) (P x) (S y)), ((REC addc) (S x) (P y))⟩⟩ (71)

Hence we may regard (REC addc) where addc is defined by the right-hand-side of definition (68) as the required solution to
the equation (66) in which plusc is an unknown.

The abstraction shown in (68) and the claims (16.8) and (16.9) simply go to show that M ≡α λf [{f/z}L] is a solution to
the equation z =βδ L, whenever such a solution does exist. Further, the claims also show that we may “unfold” the recursion
(on demand) by simply performing the substitution {L/z}L for each free occurrence of z within L.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 678 of 778 Quit

Exercise 16.3

1. Prove that the relation −→δ is confluent.

2. The language FL does not have any operators that take boolean arguments and yields integer values. Define a standard
conversion function B2I which maps the value F to Z and T to (S Z).

3. Using the combinator add and the other constructs of ΛΣ(X) to

(a) define the equation for products of numbers in the language.

(b) define the multiplication operation mult on integers and prove that it satisfies the equation(s) for products.

4. The equation (65) is defined conditionally. However the following is equally valid for all integer values x and y.

x+ y = (x− 1) + (y + 1) (72)

(a) Follow the steps used in the construction of addc to define a new applied addc′ that instead uses equation (72).

(b) Is (REC addc′) =βδ (addc
′ (REC addc′))?

(c) Is addc =βδ addc
′?

(d) Is (REC addc) =βδ (REC addc′)?

(e) Computationally speaking (in terms of β and δ reductions), what is the difference between addc and addc′?

5. The function addc was defined in curried form. Use the pairing function in the untyped λ-calculus, to define

(a) addition and multiplication as binary functions independently of the existing functions.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 679 of 778 Quit

(b) the binary ’curry’ function which takes a binary function and its arguments and creates a curried version of the
binary function.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 680 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 681 of 778 Quit

16.5. ΛRecFL(X) with type rules

Typing ΛRecFL(X) expressions

We have already seen that the simple language FL has

• two kinds of expressions: integer expressions and boolean expressions,

• there are also constructors which take integer expressions as arguments and
yield boolean values

• there are also function types which allow various kinds of functions to be
defined on boolean expressions and integer expressions.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 682 of 778 Quit

The Need for typing in ΛRecFL(X)

• A type is an important attribute of any variable, constant or expression,
since every such object can only be used in certain kinds of expressions.

• Besides the need for type-checking rules on TΩ(X) to prevent illegal con-
structor operations,

– rules are necessary to ensure that λ-applications occur only between terms
of appropriate types in order to remain meaningful.

– rules are necessary to ensure that all terms have clearly defined types at
compile-time so that there are no run-time type violations.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 683 of 778 Quit

TL: A Language of Simple Types

Consider the following language of types (in fully parenthesized form) defined
over an infinite collection ′a ∈ TV of type variables, disjoint from the set of
variables. We also have two type constants int and bool.

σ, τ ::= int bool ′a ∈ TV (σ∗τ ) (σ→τ )
Notes.

• int and bool are type constants.

• In any type expression τ , TV ar(τ ) is the set of type variables

• ∗ is the product operation on types and

•→ is the function operator on types.

•We require ∗ because of the possibility of defining functions of various kinds
of arities in ΛΩ(X).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 684 of 778 Quit

TL: Precedence and Associativity

•Precedence. We assume ∗ has a higher precedence than →.

•Associativity.

– ∗ is left associative whereas
–→ is right associative



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 685 of 778 Quit

Type-inference Rules: Infrastructure

The question of assigning types to complicated expressions which may have
variables in them still remains to be addressed.

Type inferencing. Can be done using type assignment rules, by a recursive
travel of the abstract syntax tree.

Free variables (names) are already present in the environment (symbol ta-
ble).

Constants and Constructors.May have their types either pre-defined or
there may be axioms assigning them types.

Bound variables.May be necessary to introduce “fresh” type variables in
the environment.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 686 of 778 Quit

Type Inferencing: Infrastructure

The elementary typing defined previously (§16.3.1) for the elementary expres-
sions of FL does not suffice

1. in the presence of λ abstraction and application, which allow for higher-order
functions to be defined

2. in the presence of polymorphism, especially when we do not want to unnec-
essarily decorate expressions with their types.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 687 of 778 Quit

Type Assignment: Infrastructure

• Assume Γ is the environmenta (an association list) which may be looked up
to determine the types of individual names. For each variable x ∈ X , Γ(x)
yields the type of x i.e. Γ(x) = σ if x : σ ∈ Γ.

• For each (sub-)expression in ΛRecFL(X) we define a set C of type con-
straints of the form σ = τ , where T is the set of type variables used in
C.

• The type constraints are defined by induction on the structure of the expres-
sions in the language ΛRecFL(X).

• The expressions of ΛRecFL(X) could have free variables. The type of the
expression would then depend on the types assigned to the free variables.
This is a simple kind of polymorphism.

• It may be necessary to generate new type variables as and when required
during the process of inferencing and assignment.

ausually a part of the symbol table



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 688 of 778 Quit

Constraint Typing Relation

Definition 16.10 For each term L ∈ ΛRecFL(X) the constraint typing
relation is of the form

Γ ⊢ L : τ ▷T C

where

• Γ is called the contexta and defines the stack of assumptionsb that may be
needed to assign a type (expression) to the (sub-)expression L.

• τ is the type(-expression) assigned to L

•C is the set of constraints

• T is the set of “fresh” type variables used in the (sub-)derivations
ausually in the symbol table
bincluding new type variables



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 689 of 778 Quit

Typing axioms: Basic 1

The following axioms (c.f Typing FL0 Expressions) may be either predefined or
applied during the scanning and parsing phases of the compiler to assign types
to the individual tokens and thus create an initial type environment Γ0.

Z
Γ ⊢ Z : int ▷∅ ∅

T
Γ ⊢ T : bool ▷∅ ∅

F
Γ ⊢ F : bool ▷∅ ∅

S
Γ ⊢ S : int→int ▷∅ ∅

P
Γ ⊢ P : int→int ▷∅ ∅

IZ
Γ ⊢ IZ : int→bool ▷∅ ∅

GTZ
Γ ⊢ GTZ : int→bool ▷∅ ∅



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 690 of 778 Quit

Typing axioms: Basic 2

ITEI
Γ ⊢ ITE : bool∗int∗int→int ▷∅ ∅

ITEB
Γ ⊢ ITE : bool∗bool∗bool→bool ▷∅ ∅

Notice that the constructor ITE is overloaded and actually is two constructors
ITEI and ITEB. Which constructor is actually used will depend on the context
and the type-inferencing mechanism.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 691 of 778 Quit

Type Rules: Variables and Abstraction

Var
Γ ⊢ x : Γ(x) ▷∅ ∅

Abs
Γ, x : σ ⊢ L : τ ▷T C
Γ ⊢ λx[L] : σ→τ ▷T C



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 692 of 778 Quit

Type Rules: Application

App
Γ ⊢ L : σ ▷T1 C1
Γ ⊢M : τ ▷T2 C2

Γ ⊢ (L M) : ′a ▷T ′ C ′
(Conditions 1. and 2.)

where

•Condition 1. T1 ∩ T2 = T1 ∩ TV ar(τ ) = T2 ∩ TV ar(σ) = ∅
Condition 2. ′a ̸∈ T1 ∪ T2 ∪ TV ar(σ) ∪ TV ar(τ ) ∪ TV ar(C1) ∪
TV ar(C2).

• T ′ = T1 ∪ T2 ∪ {′a}
•C ′ = C1 ∪ C2 ∪ {σ = τ→′a}



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 693 of 778 Quit

Example 16.11 Consider the following simple combinator λx[λy[λz[(x (y z))]]] which defines the function composition
operator. Since there are three bound variables x, y and z we begin with an initial assumption Γ = x : ′a, y : ′b, z : ′c which
assign arbitrary types to the bound variables, represented by the type variables ′a, ′b and ′c respectively. Note however, that
since it has no free variables, its type does not depend on the types of any variables. We expect that at the end of the proof
there would be no assumptions.Our inference for the type of the combinator then proceeds as follows.

1. x : ′a, y : ′b, z : ′c ⊢ x : ′a ▷∅ ∅ (Var)

2. x : ′a, y : ′b, z : ′c ⊢ y : ′b ▷∅ ∅ (Var)

3. x : ′a, y : ′b, z : ′c ⊢ z : ′c ▷∅ ∅ (Var)

4. x : ′a, y : ′b, z : ′c ⊢ (y z) : ′d ▷{′d} {′b = ′c→′d} (App)

5. x : ′a, y : ′b, z : ′c ⊢ (x (y z)) : ′e ▷{′d,′e} {′b = ′c→′d, ′a = ′d→′e} (App)

6. x : ′a, y : ′b ⊢ λz[(x (y z))] : ′c→′e ▷{′d,′e} {′b = ′c→′d, ′a = ′d→′e} (Abs)

7. x : ′a ⊢ λy[λz[(x (y z))]] : ′b→′c→′e ▷{′d,′e} {′b = ′c→′d, ′a = ′d→′e} (Abs)

8. ⊢ λx[λy[λz[(x (y z))]]] : ′a→′b→′c→′e ▷{′d,′e} {′b = ′c→′d, ′a = ′d→′e} (Abs)

Hence λx[λy[λz[(x (y z))]]] : ′a→′b→′c→′e subject to the constraints given by {′b = ′c→′d, ′a = ′d→′e} which yields
λx[λy[λz[(x (y z))]]] : (′d→′e)→(′c→′d)→′c→′e



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 694 of 778 Quit

Principal Type Schemes

Definition 16.12 A solution for Γ ⊢ L : τ ▷T C is a pair ⟨S, σ⟩ where S
is a substitution of type variables in τ such that S(τ ) = σ.

• The rules yield a principal type scheme for each well-typed applied λ-term.

• The term is ill-typed if there is no solution that satisfies the constraints.

• Any substitution of the type variables which satisfies the constraints C is an
instance of the most general polymorphic type that may be assigned to the
term.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 695 of 778 Quit

Exercise 16.4

1. The language has several constructors which behave like functions. Derive the following rules for terms in TΩ(X) from
the basic typing axioms and the rule App.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 696 of 778 Quit

Sx
Γ ⊢ t : τ ▷T C

Γ ⊢ (S t) : int ▷T C ∪ {τ = int}

Px
Γ ⊢ t : τ ▷T C

Γ ⊢ (P t) : int ▷T C ∪ {τ = int}

IZx
Γ ⊢ t : τ ▷T C

Γ ⊢ (IZ t) : bool ▷T C ∪ {τ = int}

GTZx
Γ ⊢ t : τ ▷T C

Γ ⊢ (GTZ t) : bool ▷T C ∪ {τ = int}

ITEx

Γ ⊢ t : σ ▷T C
Γ ⊢ t1 : τ ▷T1

C1

Γ ⊢ t0 : υ ▷T0
C0

Γ ⊢ (ITE ⟨t, t1, t0⟩) : τ ▷T ′ C ′

(T ∩ T1 = T1 ∩ T0 = T0 ∩ T = ∅)

where T ′ = T ∪ T1 ∪ T0 and C ′ = C ∪ C1 ∪ C0 ∪ {σ = bool, τ = υ}
2. Use the rules to define the type of the combinators K and S?



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 697 of 778 Quit

3. How would you define a type assignment for the recursive function addc defined by equation (68).

4. Prove that the terms, ω = λx[(x x)] and Ω = (ω ω) are ill-typed.

5. Are the following well-typed or ill-typed? Prove your answer.

(a) (K S)

(b) ((K S) ω)

(c) (((S K) K) ω)

(d) (ITE ⟨(IZ x), T, (K x)⟩)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 698 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 699 of 778 Quit

17. Formal Semantics of Languages

Formal Semantics of Languages



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 700 of 778 Quit

The Concept of Environment

• Any imperative language indirectly exposes the memory (or store) to the
user for manipulation.

•Memory (or store) is a set Loc of locations used to store the values of
variables.

• Unlike in an actual computer, we do not consider all memory locations to be
of the same size and shape. It is necessary to be able to associate a location
to be a single cell that can store even a complex value of the appropriate
type.

• Each variable in an imperative program is assigned a location.

• The environment γ : X → Loc is an association of (imperative) variables
to locations and Env = {γ | γ : X → Loc} denotes the set of all
environments.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 701 of 778 Quit

The Concept of State

• V alues is the set of values that may be stored in memory. In general values
is a disjoint union of various sets of values. In the case of the simple language
FL0, V alues = (int ⊎ bool)a.

•We define the store to be a (partial) function from Loc to the set V alues
of possible values that may be stored in memory. σ : Loc ⇀ V alues.
Stores = {σ | σ : Loc ⇀ V alues} is the set of possible stores.

• The (dynamic) state of a program is defined by the pair (γ, σ) ∈ States =
Env × Stores.

aThe use of ⊎ rather than ∪ ensures that for each element in the set V alues it is possible to identify which component set it comes from.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 702 of 778 Quit

State: Illustration

x y z

T

132456

i

j

k

−87567

• l-values. γ(x) = i : bool, γ(y) = j : int, γ(z) = k : int

• r-values. σ(i) = T : bool, σ(j) = 132456 : int, σ(k) = −87567 : int



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 703 of 778 Quit

References in Languages

ML-like impure functional languages

• have an explicit polymorphic ′a ref type constructor. Hence x :
bool ref, y, z : int ref and x is a named reference to the location
i

• have an explicit unary dereferencing operator ! to read the value contained
in the location referenced by x, i.e. !x = σ(i).

• The actual locations however are not directly visible.
C-like imperative languages are not as fussy as the ML-like languages. C (and

C++) even treats locations only as integers and allows integer operations
to be preformed on them!



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 704 of 778 Quit

l-values and r-values

T

132456

i

j

k

−87567

wx y z

m
l m

78663

• l is the l-value of w i.e γ(w) = l ∈ Loc
•m is the r-value of w i.e. σ(γ(w)) = !w = m ∈ Loc
•m is also an l-value since !w : int ref

• !(!w) = 78663 : int is the r-value of !w



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 705 of 778 Quit

17.0.1. l-values, r-values, aliasing and indirect addressing

The terms “l-value” (for “left-value”) and “r-value” (for “right-value”) come from the practice in most imperative languages
of writing assignment commands by overloading the variable name to denote both its address (γ(x)) in Loc as well as the
value σ(γ(x)) stored in memory. Consider the example,

• x := x+ y (Pascal)

• x = x+ y (C, C++, Java, Python, Perl)

The occurrence of “x” on the left-hand side of the assignment command denotes a location γ(x) whereas the occurrences
of “x” and “y” on the right-hand-side of the assignment denote the values σ(γ(x)) and σ(γ(y)) respectively. The term
“dereferencing” is used to denote the action of “reading” the value stored in a location.

• This notation for assignment becomes a source of tremendous confusion when locations are also valid values, as in the
case of indirect addressing (look at w) and may be manipulated.

• The confusion is further exacerbated when locations are also integers indistinguishable from the integers stored in the
locations. The result of dereferencing an integer variable may be one of the following.

– An invalid location leading to a segmentation fault. For instance, the integer could be negative or larger than any
valid memory address.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 706 of 778 Quit

– Another valid location with an undefined value or with a value defined previously when the location was assigned to
some other variable in a different job. This could lead to puzzling results in the current program.

– Another valid location which is already the address of a variable in the program (leading to an aliasing totally
unintended by the programmer). This could also lead to puzzling results in the current program.

Modern impure functional languages (which have strong-typing facilties) usually clearly distinguish between locations and
values as different types. Hence every imperative variable represents only an l-value. Its r-value is obained by applying
a dereferencing operation (the prefix operation !). Hence the same assignment command in ML-like languages would be
written

• x :=!x+!y (ML and OCaml)

The following interactive ML session illustrates aliasing and the effect on the aliased variables.

Standard ML of New Jersey v110.76 [built: Tue Oct 22 14:04:11 2013]

- val u = ref 1;

val u = ref 1 : int ref

- val v = u; (* u and v are aliases for the same location *)

val v = ref 1 : int ref

- v := !v+1;

val it = () : unit
- !u;



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 707 of 778 Quit

val it = 2 : int

- !v;

val it = 2 : int

- v := !v+1;

val it = () : unit

- !u;.val it = 3 : int

- !v;

val it = 3 : int

-

The following ML-session illustrates indirect addressing (and if you get confused, don’t come to me, I am confused too;
confusion is the price we pay for indiscriminate modification of state).

Standard ML of New Jersey v110.76 [built: Tue Oct 22 14:04:11 2013]

- val x = ref (ref 0);

val x = ref (ref 0) : int ref ref

- val y = !x;

val y = ref 0 : int ref

- val z = ref y;

val z = ref (ref 0) : int ref ref

- y := !y+1;
val it = () : unit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 708 of 778 Quit

- !y;

val it = 1 : int

- !z;

val it = ref 1 : int ref

- !(!z);

val it = 1 : int

- !(!x);

val it = 1 : int

-

With the introduction of references, the store may have locations whose r-value is another location. In such a situation.
Further if locations themselves are addressed by (non-negative) integer values, there woudl be an obvious clash with normal
integer values of simple integer variables. Hence we woudl have to address this problem as follows.

• Allow locations to be part of the set of values and

• In the interests of maintaining a strong type discipline, distinguish between sets of values that may not be disjoint.

We would then address the above problems by (re-)defining V alues to include locations too. Thus with the inclusion of
references we have V alues = int ⊎ bool ⊎ Loc.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 709 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 710 of 778 Quit

17.1. The Semantics of Expressions in FL(X)

Semantics of Expressions of FL(X)

• Consider the language FL(X). Instead of the δ-rules defined earlier, we as-
sume that these terms are evaluated on a hardware which can represent int
and bool.

• Assume int is the hardware representation of the integers and bool =
{T, F}.

•We assume that every (sub-)expression in the language has been typed with
a unique type attribute.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 711 of 778 Quit

Functional Semantics of FL(X)

The language FL(X) is a pure expression language that is

• free of side-effects and
• free of references
Each expression e ∈ WTΩ(X) denotes a value from the set V alues depending
on the state it is evaluated in. The meaning of e ∈ WTΩ(X) is given by a
function

E [e] : States→ V alues (73)

and is therefore a function of the state. Hence

E : WTΩ(X)→ States→ V alues (74)

The semantics given earlier now reads as follows (with the valuation v replaced
by a state s = (γ, σ)).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 712 of 778 Quit

A New Functional Semantics of FL(X)

E [x] s
df
= σ(γ(x)), for s = (γ, σ) (75)

E [T] s
df
= true (76)

E [F] s
df
= false (77)

E [Z] s
df
= 0 (78)

E [(P t)] s
df
= (E [t] s)− 1 (79)

E [(S t)] s
df
= (E [t] s) + 1 (80)

E [(IZ t)] s
df
= (E [t] s) = 0 (81)

E [(GTZ t)] s
df
= (E [t] s) > 0 (82)

E [(ITE ⟨t, t1, t0⟩)] s
df
=

{
E [t1] s if E [t] s
E [t0] s if not E [t] s

(83)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 713 of 778 Quit

Evaluating FL(X) on a machine

•We previously treated FL(X) as simply a data-type and gave δ-rules. See

– lemma 16.3,

– δ-nf for the conditonal,

– the zero test

– test for positivity

• Here we define a deterministic evaluation mechanism −→e on a more real-
istic hardware which supports integers and booleans

• The normal forms on this machine would have to be appropriate integer and
boolean constants as represented in the machine.

•We define an expression evaluation relation −→e such that

−→e⊆ (States×WTΩ(X))× (States× (int ∪ bool))



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 714 of 778 Quit

Operational Semantics: Constants and Variables

Unless there is a prior generally-accepted mathematical definition of a language at hand, who is to say

whether a proposed implementation is correct?

Dana S. Scott (1969)

Let σ ∈ States be any state.

T
γ ⊢ ⟨σ, T⟩ −→e ⟨σ, T⟩ F

γ ⊢ ⟨σ, F⟩ −→e ⟨σ, F⟩

Z
γ ⊢ ⟨σ, Z⟩ −→e ⟨σ, 0⟩ x

γ ⊢ ⟨σ, x⟩ −→e ⟨σ, σ(γ(x))⟩



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 715 of 778 Quit

Operational Semantics: Integer-valued Expressions

P
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, m⟩

γ ⊢ ⟨σ, (P e)⟩ −→e ⟨σ, m− 1⟩ (e, m : int)

S
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, m⟩

γ ⊢ ⟨σ, (S e)⟩ −→e ⟨σ, m + 1⟩ (e, m : int)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 716 of 778 Quit

Operational Semantics: Boolean-valued Expressions

IZ0
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, m⟩

γ ⊢ ⟨σ, (IZ e)⟩ −→e ⟨σ, F⟩ (e, m : int, m <> 0)

IZ1
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, 0⟩

γ ⊢ ⟨σ, (IZ e)⟩ −→e ⟨σ, T⟩ (e : int)

GTZ0
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, m⟩

γ ⊢ ⟨σ, (GTZ e)⟩ −→e ⟨σ, F⟩ (e, m : int, m <= 0)

GTZ1
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, m⟩

γ ⊢ ⟨σ, (GTZ e)⟩ −→e ⟨σ, T⟩ (e, m : int, m > 0)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 717 of 778 Quit

Operational Semantics: Conditional Expressions

ITEI0
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, F⟩

γ ⊢ ⟨σ, (ITE ⟨e, e1, e0⟩)⟩ −→e ⟨σ, e0⟩
(e1, e0 : int)

ITEI1
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, T⟩

γ ⊢ ⟨σ, (ITE ⟨e, e1, e0⟩)⟩ −→e ⟨σ, e1⟩
(e1, e0 : int)

ITEB0
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, F⟩

γ ⊢ ⟨σ, (ITE ⟨e, e1, e0⟩)⟩ −→e ⟨σ, e0⟩
(e1, e0 : bool)

ITEB1
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, T⟩

γ ⊢ ⟨σ, (ITE ⟨e, e1, e0⟩)⟩ −→e ⟨σ, e1⟩
(e1, e0 : bool)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 718 of 778 Quit

Reduction vs. Functional vs. Operational Semantics

Theorem 17.1 For each term e ∈ WTΩ(X) and state s = (γ, σ), and valu-
ation v = σ ◦ γ

M [e] v = E [e] s (84)

γ ⊢ ⟨σ, e⟩ −→e ⟨σ,E [e] s⟩ (85)

■
Taken in conjunction with lemma 16.3, δ-nf for integers, δ-nf for the conditonal,
the zero test and test for positivity essentially all the various semantics and
computation rules may be proved mutaully equivalent and conforming to our
informal understanding of the language.
The expression language is purely functional since the evaluation of an expres-
sion in any state does not effect any change in the state.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 719 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 720 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 721 of 778 Quit

17.2. The Operational Semantics of Commands

WHILE: Big-Step Semantics

We are faced with the problem of variables which actually vary

Christopher Strachey (1967)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 722 of 778 Quit

The WHILE language

•We initially define a simple language of commands.

• The expressions of the language are those of any term algebra TΩ(X).

•We simply assume there is a well-defined relation −→e for evaluating ex-
pressions that is proven correct.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 723 of 778 Quit

State Changes or Side-Effects

• State changes are usually programmed by assignment commands which oc-
cur one location at a time.

• In the simple WHILE language side-effects do not occur except by explicit
assignment commands.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 724 of 778 Quit

Modelling a Side-Effect

Given a store σ, a variable x such that γ(x) = ℓ and σ(ℓ) = a, the state
change effected by the assignment x := b is a new store that is identical to σ
except at the location γ(x) which now contains the value b

σ′ = [γ(x) 7→ b]σ

i.e.

σ′(ℓ) =
{
σ(ℓ) if ℓ ̸= γ(x)
b otherwise



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 725 of 778 Quit

Aliases

Definition 17.2 Two (or more) variables are called aliases if they denote the
same location (y and u in the figure below).

T

132456

i

j

k

−87567

wx y

m
l m

78663

z
u



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 726 of 778 Quit

The Commands of the WHILE Language

c0, c1, c ::= skip Skip

x := e Assgn

{c0} Block

c0; c1 Seq

if e then c1 else c0 fi Cond

while e do c od While

where e is either an integer or boolean expression in the language FL(X) with
operational semantics as given before.
For any signature Ω and a set of variables X we denote the set of all commands
over the well-typed expressions WTΩ(X) by WHILEΩ(X)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 727 of 778 Quit

Functional Semantics of WHILE

A New Functional Semantics of FL(X)

C : WHILEΩ(X)→ States→ States

For any s = (γ, σ) ∈ States,

C [skip] s
df
= s

C [x := e] s
df
= (γ, σ′) where σ′ = [γ(x) 7→ E [e] s]σ

C [{c}] s df
= C [c] s

C [c0; c1] s
df
= C [c1] (C [c0] s)

C [if e then c1 else c0 fi] s
df
=

{
C [c1] s if E [e] s = true
C [c0] s if E [e] s = false



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 728 of 778 Quit

Rewriting Functional Semantics of WHILE

A New Functional Semantics of FL(X)

We may express the same semantics as follows using the λ notation as follows.

C [skip]
df
= λs[s] (86)

C [x := e]
df
= λ(γ, σ)[(γ, σ′)] (87)

where σ′ = [γ(x) 7→ E [e] (γ, σ)]σ

C [{c}] df
= λs[C [c] s] (88)

C [c0; c1]
df
= λs[C [c1] (C [c0] s)] (89)

C [if e then c1 else c0 fi]
df
= λs

[{
C [c1] s if E [e] s = true
C [c0] s if E [e] s = false

]
(90)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 729 of 778 Quit

Semantics-induced Equality on Commands

Before defining the meaning of the command while e do c od it is only ap-
propriate that we mention some trivial properties of the language regarded as
an algebra (see theorem 17.4).
As in the case of the idenitites of the expression language, the semantics of
commands induces an equality relation on commands.

Definition 17.3 For any two commands c1 and c2,

1. C [c1] = C [c2] if and only if for all s ∈ States, C [c1] s = C [c2] s

2. c1 =c c2 if and only if C [c1] = C [c2]



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 730 of 778 Quit

WHILEΩ(X) is a Monoid

Theorem 17.4WHILEΩ(X) is a monoid under sequencing (;) with skip as
the identity element. That is, for all commands c0, c1, c2 ∈ WHILEΩ(X),

Closure of sequencing. c1; c2 ∈ WHILEΩ(X).

Associativity of sequencing. c0; {c1; c2} =c {c0; c1}; c2
Identity of sequencing . c0; skip =c c0 =c skip; c0

■
We could easily add (for convenience) an ”if e then c fi” command to the
language (see section 4.4) with the meaning

if e then c fi =c if e then c else skip fi (91)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 731 of 778 Quit

The While Loop: Identities

Intuitively the while-loop satisfies the following identities

C [while e do c od] s

=

{
C [c;while e do c od] s if E [e] s = true
s if E [e] s = false

{By equation (89)} =

{
C [while e do c od] (C [c] s) if E [e] s = true
s if E [e] s = false

{By equation (90)} = C [if e then {c;while e do c od} else skip fi] s
{By equation (91)} = C [if e then {c;while e do c od} fi] s

Operational Semantics: The While Loop



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 732 of 778 Quit

Loop Unrolling

Hence by the last identity we get

while e do c od =c if e then {c;while e do c od} fi (92)

The last identity is actually a form of “recursion unfolding” (8) and is called
“loop unrolling” since it may be unrolled as many times as we require.

while e do c od

=c if e then {c;while e do c od} fi
=c if e then {c; if e then {c;while e do c od} fi} fi
=c if e then if e then {c; if e then {c;while e do c od} fi} fi fi

=c · · ·



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 733 of 778 Quit

The Semantics of the while command

From the above identities and taking inspiration from the claims 16.8, 16.9
and the fixed-point theorem and corollary 13.6 it follows that

C [while e do c od]
df
= YC (λf λs

[{
f (C [c] s) if E [e] s = true
s if E [e] s = false

]
)

(93)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 734 of 778 Quit

17.3. Loop unrolling

We know that each sentence of a language has to be finite. However the while do od-loop may be considered a finite
representation of an “infinite” program.

Example 17.5 Consider the program
x := Z;while T do x := (S x) od

By the semantics it is clear that this program does not ever terminate. The value of x is given by σ(γ(x)). Starting from
x := Z, and abbreviating the state to the value σ(γ(x)) we have

C [while T do x := (S x) od] 0
= C [while T do x := (S x) od] 1
= C [while T do x := (S x) od] 2
= C [while T do x := (S x) od] 3
= C [while T do x := (S x) od] 4
...
...

= · · ·
ad infinitum.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 735 of 778 Quit

Example 17.6 Consider the program
while T do skip od

By equation (17.2) the loop unrolls infinitely and even though skip does not alter the state in any way, it does not terminate
either. Hence in terms of the operational semantics of the rule this command never actually yields a state. Taking a cue
from the previous example, we may think of this program as representing a function that is undefined in all states. Letting
⊥ denote the undefined state we have

C [while T do skip od] s = ⊥



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 736 of 778 Quit

Operational Semantics: Basic Commands

Skip
γ ⊢ ⟨σ, skip⟩ −→1

c σ

Assgn
γ ⊢ ⟨σ, e⟩ −→e m

γ ⊢ ⟨σ, x := e⟩ −→1
c [γ(x) 7→ m]σ

Notes:

1. The Skip rule corresponds to any of the following:

• a noop
• the identity function or identity relation on states

• a command which has no effect on states

2. The assignment is the only command in our language which creates a side-
effect (actually changes state)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 737 of 778 Quit

Operational Semantics: Blocks

We have defined a block as simply a command enclosed in braces. It is meant to
delimit a (new) scope. Later we will see that there could be local declarations
as well, in which case the semantics changes slightly to include a new scope

Block
γ ⊢ ⟨σ, c⟩ −→1

c σ′

γ ⊢ ⟨σ, {c}⟩ −→1
c σ′



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 738 of 778 Quit

Operational Semantics: Sequencing

Seq
γ ⊢ ⟨σ, c0⟩ −→1

c σ′,
γ ⊢ ⟨σ′, c1⟩ −→1

c σ′′

γ ⊢ ⟨σ, c0; c1⟩ −→1
c σ′′

Notice that sequencing is precisely the composition of relations. If the relation
−→1

c is a function (in the case of our language it actually is a function),
sequencing would then be a composition of functions



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 739 of 778 Quit

Operational Semantics: Conditionals

Cond0

γ ⊢ ⟨σ, e⟩ −→e F,

γ ⊢ ⟨σ, c0⟩ −→1
c σ0

γ ⊢ ⟨σ, if e then c1 else c0 fi⟩ −→1
c σ0

Cond1

γ ⊢ ⟨σ, e⟩ −→e T,

γ ⊢ ⟨σ, c1⟩ −→1
c σ1

γ ⊢ ⟨σ, if e then c1 else c0 fi⟩ −→1
c σ1

Selective Evaluation.
Notice again the effect of selective evaluation in the operational semantics of
the conditional and again in the operational semantics of the while loop.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 740 of 778 Quit

The While loop: Operational Rules

The While Loop: Identities

•We use the fact that the while e do c od is really a form of recursion –
actually it is a form of “tail recursion”. Hence the execution behaviour of
while e do c od is exactly that of

if e then {c;while e do c od} else skip fi (94)

• The following rules may be derived from (94) using the rules for condi-
tional, sequencing and skip (though the number of steps may not exactly
correspond).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 741 of 778 Quit

Operational Semantics: The While Loop

The While Loop: Identities

While0
γ ⊢ ⟨σ, e⟩ −→e F

γ ⊢ ⟨σ,while e do c od⟩ −→1
c σ

While1

γ ⊢ ⟨σ, e⟩ −→e T,

γ ⊢ ⟨σ, c⟩ −→1
c σ′,

γ ⊢ ⟨σ′,while e do c od⟩ −→1
c σ′′

γ ⊢ ⟨σ,while e do c od⟩ −→1
c σ′′



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 742 of 778 Quit

The While Loop: caveats

Notice that the above rules are applicable only if all commands are terminating!
In particular,

1. the execution of the whole while loop needs to terminate. For this to happen
it is necessary (though not sufficient) that

2. the execution of the body c also needs to terminate.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 743 of 778 Quit

The effect of side-effects. In the above operational rules we have assumed that expression-evaluation has no side-effects
i.e. there are no changes to the state of the program during or as result of expression evaluation. However many programming
languages allow side-effects to global or non-local variables during expression evaluation. This does not significantly change
the semantics, though it does very significantly change our ability to reason about such programs. In the presence of
side-effects during expression-evalaution the semantics of commands would also changeas we show in the following modified
semantics of commands. In particular we need to carry state information during expression evaluation.

Assgn0
γ ⊢ ⟨σ, x := m⟩ −→1

c [γ(x) 7→ m]σ
Assgn1

γ ⊢ ⟨σ, e⟩ −→e ⟨σ′, e′⟩
γ ⊢ ⟨σ, x := e⟩ −→1

c ⟨σ′, x := e′⟩

Cond0

γ ⊢ ⟨σ, e⟩ −→e ⟨σ′, F⟩,
γ ⊢ ⟨σ′, c0⟩ −→1

c σ0
γ ⊢ ⟨σ, if e then c1 else c0 fi⟩ −→1

c σ0

Cond1

γ ⊢ ⟨σ, e⟩ −→e ⟨σ′, T⟩,
γ ⊢ ⟨σ′, c1⟩ −→1

c σ1
γ ⊢ ⟨σ, if e then c1 else c0 fi⟩ −→1

c σ1

While0
γ ⊢ ⟨σ, e⟩ −→e ⟨σ′, F⟩

γ ⊢ ⟨σ,while e do c od⟩ −→1
c σ′

While1

γ ⊢ ⟨σ, e⟩ −→e ⟨σ′, T⟩,
γ ⊢ ⟨σ′, c⟩ −→1

c σ′′,
γ ⊢ ⟨σ′′,while e do c od⟩ −→1

c σ′′′

γ ⊢ ⟨σ,while e do c od⟩ −→1
c σ′′′

The rules of the other constructs viz. skip, blocks and sequencing, remain unchanged.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 744 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 745 of 778 Quit

17.4. The Operational Semantics of Declarations

Local Declarations

We introduce declarations through a new syntactic category Decls defined as
follows:

d1, d2, d ::= int x bool y d1; d2
c ::= · · · {d; c}

•Most languages insist on a “declaration before use” discipline,

•Declarations create “little new environments”.

• Need to be careful about whether a variable is at all defined.

• Even if the l-value of a variable is defined, its r-value may not be defined.
The rules for variables and assignments then need to be changed to the
following.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 746 of 778 Quit

Some changed rules

•We use the symbol ⊥ to denote the undefined.

•We use z ̸= ⊥ to denote that z is well-defined.

x′
γ ⊢ ⟨σ, x⟩ −→e ⟨σ, σ(γ(x))⟩ (σ(γ(x)) ̸= ⊥)

Assgn0′
γ ⊢ ⟨σ, x := m⟩ −→1

c [γ(x) 7→ m]σ
(γ(x) ̸= ⊥)

Assgn1′
γ ⊢ ⟨σ, e⟩ −→e ⟨σ, e′⟩

γ ⊢ ⟨σ, x := e⟩ −→1
c ⟨σ, x := e′⟩ (γ(x) ̸= ⊥)



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 747 of 778 Quit

Declarations: Little Environments

The effect of a declaration is to create a little environment which is pushed
onto the existing environment. The transition relation

−→d⊆ ((Env × Stores×Decls)× (Env × Stores))

int− x
γ ⊢ ⟨σ, int x⟩ −→d ⟨[x 7→ l], [l 7→ ⊥]σ⟩ (l /∈ Range(γ))

bool− x
γ ⊢ ⟨σ, bool x⟩ −→d ⟨[x 7→ l], [l 7→ ⊥]σ⟩ (l /∈ Range(γ))



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 748 of 778 Quit

Scope

• The scope of a name begins from its definition and ends where the corre-
sponding scope ends

• Scopes end with definitions of functions

• Scopes end with the keyword end in any let ... in ...end or local
... in ...end

• Scopes are delimited by brackets “[. . .]” in (fully-bracketed) λ-abstractions.

•We simply use {} to delimit scope



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 749 of 778 Quit

Scope Rules

• Scopes may be disjoint
• Scopes may be nested one completely within another

• A scope cannot span two disjoint scopes

• Two scopes cannot (partly) overlap

forward



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 750 of 778 Quit

Example 17.7 local. Consider the following example ML program which uses local declarations in the

development of the algorithm to determine whether a positive integer is perfect.

local

exception invalidArg;

fun ifdivisor3 (n, k) =

if n <= 0 orelse

k <= 0 orelse

n < k

then raise invalidArg

else if n mod k = 0

then k

else 0;

fun sum_div2 (n, l, u) =

if n <= 0 orelse

l <= 0 orelse



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 751 of 778 Quit

l > n orelse
u <= 0 orelse

u > n

then raise invalidArg

else if l > u

then 0

else ifdivisor3 (n, l)

+ sum_div2 (n, l+1, u)

in

fun perfect n =

if n <= 0

then raise invalidArg

else

let

val nby2 = n div 2

in



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 752 of 778 Quit

n = sum_div2 (n, 1, nby2)

end

end



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 753 of 778 Quit

Scope & local

end

local
fun fun1  y =

fun fun2  z =

in
fun fun3 x  =

...

fun2 ...
fun1 ...

...

...
fun1



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 754 of 778 Quit

Execution in the Modified Environment

Once a declaration has been processed a new scope γ′ is created in which
the new variables are available for use in addition to everything else that was
previously present in the environment γ (unless it has been “hidden” by the
use of the same name in the new scope). γ′ is pushed onto γ to create a new
environment γ[γ′]. For any variable x,

γ[γ′](x) =

 γ′(x) if x ∈ Dom(γ′)
γ(x) if x ∈ Dom(γ)−Dom(γ′)
⊥ otherwise

D− Seq
γ ⊢ ⟨σ, d1⟩ −→d ⟨γ1, σ1⟩

γ[γ1] ⊢ ⟨σ1, d2⟩ −→d ⟨γ2, σ2⟩
γ ⊢ ⟨σ, d1; d2⟩ −→d ⟨γ1[γ2], σ2⟩



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 755 of 778 Quit

Semantics of Anonymous Blocks

Block
γ ⊢ ⟨σ, d⟩ −→∗d ⟨γ′, σ′⟩
γ[γ′] ⊢ ⟨σ′, c⟩ −→∗c σ′′

γ ⊢ ⟨σ, {d; c}⟩ −→c σ
′′ ↾ Dom(σ)

Note.

• Note the use of the multi-step transitions on both declarations and com-
mands

•We have given up on single-step movements, since taking these “big”-steps
in the semantics is more convenient and less cumbersome

• Note that the “little” environment γ′ which was produced by the declaration
d is no longer present on exiting the block.

•On exiting the block the domain of the state returns to Dom(σ), shedding
the new locations that were created for the “little” environment.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 756 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 757 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 758 of 778 Quit

17.5. The Operational Semantics of Subroutines

Parameterless Subroutines: Named Blocks

The introduction of named blocks allows transfer of control from more control
points than in the case of unnamed blocks.

d1, d2, d ::= · · · sub P = c

c ::= · · · P

• The scope rules remain the same. All names in c refer to the most recent
definition in the innermost enclosing scope of the current scope.

• c may refer to variables that are visible in the static scope of P .



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 759 of 778 Quit

What does a procedure name represent?

• An anonymous block transforms a store σ to another store σ′.
• Each procedure name stands for a piece of code which effectively transforms
the store.

• Unlike an anonymous block which has a fixed position in the code, a named
procedure may be called from several points (representing many different
states).

• Each procedure represents a “state transformer”.

• However under static scope rules, the environment in which a procedure
executes remains fixed though the store may vary.

•Our environment, in addition to having locations should also be able to
associate names with state transformers.

Proc0 = Stores→ Stores
Env = {γ | γ : X → (Loc + Proc0)}



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 760 of 778 Quit

Semantics of Parameterless Subroutines

Each procedure declaration sub P = c modifies the environment γ by associat-
ing the procedure name P with an entity called a procedure closure proc0(c, γ),
which represents the body of the procedure and the environment in which it is
to be executed.

DSub0
γ ⊢ ⟨σ, sub P = c⟩ −→d ⟨[P 7→ proc0(c, γ)]γ, σ⟩

CSub0
γ1 ⊢ ⟨σ, c⟩ −→∗c σ′

γ ⊢ ⟨σ, P ⟩ −→c ⟨[P 7→ proc0(c, γ)]γ, σ′⟩ (γ(P ) = proc0(c, γ1))

If P is recursive then we modify the last rule to

CrecSub0
γ2 ⊢ ⟨σ, c⟩ −→∗c σ′

γ ⊢ ⟨σ, P ⟩ −→c ⟨[P 7→ proc0(c, γ)]γ, σ′⟩ (γ(P ) = proc0(c, γ1))

where γ2 = [P 7→ γ(P )]γ1.
A generalization to mutual recursion with many such procedures is, in principle
easy, though notationally tedious.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 761 of 778 Quit

Subroutines with Value Parameters

We consider the case of only a single parameter for simplicity.

d1, d2, d ::= · · · sub P (t x) = c sub P (bool x) = c

c ::= · · · P (e)

Proc0 = Stores→ Stores
Procv = (Stores× (int ∪ bool))→ Stores
Proc = Proc0 + Procv
Env = {γ | γ : X → (Loc + Proc)}



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 762 of 778 Quit

Semantics of Call-by-value

DSubv
γ ⊢ ⟨σ, sub P (t x) = c⟩ −→d ⟨[P 7→ procv(t x, c, γ)]γ, σ⟩

where t ∈ {int, bool}

CrecSubv
γ ⊢ ⟨σ, e⟩ −→∗e v

γ2 ⊢ ⟨[l 7→ v]σ, c⟩ −→∗c σ′
γ ⊢ ⟨σ, P (e)⟩ −→c σ

′ ↾ Dom(σ)
(γ(P ) = procv(t x, c, γ1))

where

• γ2 = [x 7→ l][P 7→ γ(P )]γ1,

• l /∈ Range(γ) ∪Dom(σ) and

• γ(P ) = procv(t x, c, γ1).



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 763 of 778 Quit

Subroutines with Reference Parameters

The Call-by-value parameter passing mechanism requires the evaluation of an
expression for the value parameter to be passed to the procedure. It requires in
addition the allocation of a location to store the value of the actual expression.
This strategy while quite efficient for scalar variables is too expensive when the
parameters are large structures such as arrays and records. In these case it is
more usual to pass merely only a reference to the parameter and ensure that all
modifications to any component of the formal parameter are instantaneously
reflected also in the actual parameter.
We consider the case of a single reference parameter for simplicity. We consider
the case of only a single parameter for simplicity.

d1, d2, d ::= · · · sub P (ref t x) = c sub P (ref bool x) = c

c ::= · · · P (x)

Notice that unlike the case of value parameters, the actual parameter in the
calling code can only pass a variable that is already present in its environment.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 764 of 778 Quit

Semantics of Call-by-Reference

We augment the definition of Proc to include a new entity viz. Procr. We
then have

Proc0 = Stores→ Stores
Procv = (Stores× (int ∪ bool))→ Stores
Procr = (Stores× Loc)→ Stores
Proc = Proc0 + Procv + Procr
Env = {γ | γ : X → (Loc + Proc)}

DSubr
γ ⊢ ⟨σ, sub P (t x) = c⟩ −→d ⟨[P 7→ procr(t x, c, γ)]γ, σ⟩

where t ∈ {int, bool}

CrecSubr
γ2 ⊢ ⟨[σ, c⟩ −→∗c σ′
γ ⊢ ⟨σ, P (y)⟩ −→c σ

′ (γ(P ) = procr(t x, c, γ1))

where

• γ2 = [x 7→ γ(y)][P 7→ γ(P )]γ1,

Notice that no new location is needed in the call-by-reference mechanism.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 765 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 766 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 767 of 778 Quit

18. Logic Programming and Prolog

Logic Programming

A program is a theory (in some logic) and computation is deduction from the theory.

J. A. Robinson



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 768 of 778 Quit

FOL: Reversing the Arrow

Let

ϕ← ψ
df
= ψ → ϕ

Consider any clause C = {π1, . . . , πp}∪{¬ν1, . . . ,¬νn} where πi, 1 ≤ i ≤ p
are positive literals and ¬νj, 1 ≤ j ≤ n are the negative literals. Since
a clause in FOL with free variables represents the universal closure of the
disjunction of its literals, we have



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 769 of 778 Quit

FOL Arrow Reversal

C ⇔ ∀⃗[(
∨

1≤i≤p
πi) ∨ (

∨
1≤j≤n

¬νj)]

⇔ ∀⃗[(
∨

1≤i≤p
πi) ∨ ¬(

∧
1≤j≤n

νj)]

⇔ ∀⃗[(
∧

1≤j≤n
νj)→ (

∨
1≤i≤p

πi)]

≡ ∀⃗[(
∨

1≤i≤p
πi)← (

∧
1≤j≤n

νj)]

df
= π1, . . . , πp← ν1, . . . , νn



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 770 of 778 Quit

FOL: Horn Clauses

Definition 18.1: Horn clauses
Given a clause

C
df
= π1, . . . , πp← ν1, . . . , νn

• Then C is a Horn clause if 0 ≤ p ≤ 1.

•C is called a

– program clause or rule clause if p = 1,

– fact or unit clause if p = 1 and n = 0,

– goal clause or query if p = 0,

• Each νj is called a sub-goal of the goal clause.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 771 of 778 Quit

FOL: Program or Rule Clause

P
df
= π ← ν1, . . . , νn

≡ ∀⃗[π ∨ (
∨

1≤j≤n
¬νj)]

≡ ∀⃗[π ∨ ¬(
∧

1≤j≤n
νj)]

and is read as “π if ν1 and ν2 and . . . and νn”.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 772 of 778 Quit

FOL Facts: Unit Clauses

F
df
= π

≡ ∀⃗[π]



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 773 of 778 Quit

FOL: Goal clauses

Given a goal clause

G
df
= ← ν1, . . . , νn
⇔ ∀⃗[¬ν1 ∨ . . . ∨ ¬νn]
⇔ ¬∃⃗[ν1 ∧ . . . ∧ νn]

If y⃗ = FV (ν1 ∧ . . . ∧ νn) then the goal is to prove that there exists an assign-
ment to y⃗ which makes ν1 ∧ . . . ∧ νn true.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 774 of 778 Quit

First-order Logic Programs

Definition 18.2: First-order Logic programs

A First-order logic program is a finite set of Horn clauses, i.e. it is
a set of rules P = {h1, . . . , hk}, k ≥ 0 with hl ≡ πl ← νl1, . . . , ν

l
nl
, for

0 ≤ l ≤ k. πl is called the head of the rule and νl1, . . . , ν
l
nl

is the body
of the rule.

Given a logic program P and a goal clause G = {ν1, . . . , νn} the basic idea is
to show that

P ∪ {G} is unsatisfiable
⇔ ∃⃗[ν1 ∧ · · · ∧ νn] is a logical consequence of P



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 775 of 778 Quit

Effectively showing P |= ∃⃗[ν1 ∧ · · · ∧ νn] implies that we need to find values for the variables X =
n⋃

j=1

FV (νj) which ensure

that P ∪ {G} is unsatisfiable. By Herbrand’s theorem this reduces to the problem of finding substitutions of ground terms
in the Herbrand base for variables in such a manner as to ensure unsatisfiability of P ∪{G}. This substitution is also called
a correct answer substitution.

We may regard a logic program therefore as a set of postulates of a family of models (represented by a Herbrand model)
and any correct answer substitution that may be derived (through resolution refutation) as a proof of the Goal as a logical
consequence of the postulates. Since resolution refutation is sound and complete we effectively show P ⊢R ∃⃗[ν1 ∧ · · · ∧ νn]
where ⊢R denotes a proof by resolution refutation.

A propositional logic program is one in which there are no variables either in P or in the goal clause G and the execution
is a pure application of the rule Res0 to obtain a contradiction.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 776 of 778 Quit



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 777 of 778 Quit

Prolog: EBNF1

<program> ::= <clause list> <query> | <query>

<clause list> ::= <clause> | <clause list> <clause>
<clause> ::= <predicate> . | <predicate> :- <predicate list>.

<predicate list> ::= <predicate> |

<predicate list> , <predicate>

<predicate> ::= <atom> | <atom> ( <term list> )

<term list> ::= <term> | <term list> , <term>

<term> ::= <numeral> | <atom> | <variable> | <structure>

<structure> ::= <atom> ( <term list> )

<query> ::= ?- <predicate list>.



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 778 of 778 Quit

Prolog: EBNF2

<atom> ::= <small atom> | ’ <string> ’

<small atom> ::= <lowercase letter> |

<small atom> <character>

<variable> ::= <uppercase letter> | <variable> <character>

<lowercase letter> ::= a | b | c | ... | x | y | z

<uppercase letter> ::= A | B | C | ... | X | Y | Z | _

<numeral> ::= <digit> | <numeral> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<character> ::= <lowercase letter> | <uppercase letter> |

<digit> | <special>

<special> ::= + | - | * | / | \ | ^ | ~ | : | . | ? | |

# | $ | &

<string> ::= <character> | <string> <character>



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 779 of 778 Quit

Algorithm

Algorithm 18.1

interpret0 (P ,G)
df
=

requires:A propositional logic program P and propositional goal G
goals := {G}
while goals ̸= ∅

do



Choose some goal A ∈ goals
Choose a clause A′ ← B1, . . . , Bk ∈ P : A ≡ A′

if A′ does not exist
then exit

else goals := (goals− {A}) ∪ {B1, . . . , Bk}
if goals = ∅
then return (yes)
else return (no)
ensures: yes if P ⊢ G else no



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 780 of 778 Quit

Algorithm

Algorithm 18.2

interpret1 (P ,G)
df
=

requires:A logic program P and goal G
Standardize variables apart in P ∪ {G}
goalStack := emptyStack
θ := 1
push(goalStack, θG)
while ¬empty(goalStack)

do



A := pop(goalStack)
if ∃A′ ← B1, . . . , Bk ∈ P : unifiable(A,A′)

then

{
τ := Unify (A,A′) //algorithm ??
θ := τ ◦ θ

else exit
if k > 0
then push(goalStack, θBk, . . . , θB1)

if empty(goalStack)
then return (θ)
else return (no)
ensures: if P ⊢ G then θ else no



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 781 of 778 Quit

a − a

D

/ b

D

T

T

T

−r1. E E T

r2 E T

/r3 T T D

r4 T D

E

E

a −

b ( )a

a / b

D

D | | Er5

a −

T

−r1. E E T

r2 E T

/r3 T T D

E

E

a −

b ( )a

a / b )(

( )a

T

b/

T

E

T

D

D | | Er5

r4 T D

D

D

D

Figure 5: Derivation trees or Concrete parse trees example 5.3



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 782 of 778 Quit

−

b

a

a

/

Figure 6: Abstract syntax tree (AST) for the sentences in fig. 5



Home Page ◀◀ ◀ ▶ ▶▶
PL April 17, 2023

Go Back Full Screen Close 783 of 778 Quit

Figure 7: Case m > 0 and n > 0

1

1

L

M

M

N

N

P

Q

R

S

*

*

*

*

*

*

*

*

1

1

*


	The Programming Languages Overview
	Introduction to Compiling
	Scanning or Lexical Analysis
	Regular Expressions
	Nondeterministic Finite Automata (NFA)
	Deterministic Finite Automata (DFA)

	Parsing or Syntax Analysis
	Grammars
	Context-Free Grammars
	Ambiguity
	The ``dangling else'' problem
	Specification of Syntax: Extended Backus-Naur Form
	The WHILE Programming Language: Syntax
	Parsing
	Recursive Descent Parsing
	A recursive descent parser
	Shift-Reduce Parsing
	Bottom-Up Parsing
	Simple LR Parsing

	Bindings, Attributes & Semantic Analysis
	Context-sensitive analysis and Semantics
	Binding

	(Static) Scope Rules
	Symbol Table
	Runtime Structure
	Abstract Syntax
	Syntax-Directed Translation
	Synthesized Attributes
	Inherited Attributes

	Intermediate Representation
	The Pure Untyped Lambda Calculus: Basics
	Motivation for 
	The -notation

	Notions of Reduction
	Recursion and the Y combinator

	Representing Data in the Untyped Lambda Calculus
	Confluence Definitions
	Why confluence?
	Confluence: Church-Rosser
	The Church-Rosser Property

	An Applied Lambda-Calculus
	FL with recursion
	Motivation and Organization
	Static Semantics of FL(X)
	Type-checking FL(X) terms
	The Typing Rules

	Equational Reasoning in FL(X)
	RecFL(X) with type rules

	Formal Semantics of Languages
	l-values, r-values, aliasing and indirect addressing
	The Semantics of Expressions in FL(X)
	The Operational Semantics of Commands
	Loop unrolling
	The Operational Semantics of Declarations
	The Operational Semantics of Subroutines

	Logic Programming and Prolog



